201 research outputs found

    Decay process of quantum open system at finite-temperature

    Full text link
    Starting from the formal solution to the Heisenberg equation, we revisit an universal model for a quantum open system with a harmonic oscillator linearly coupled to a boson bath. The analysis of the decay process for a Fock state and a coherent state demonstrate that this method is very useful in dealing with the problems in decay process of the open system. For finite temperature, the calculations of the reduced density matrix and the mean excitation number for the open system show that an initial coherent state will evolve into a temperature-dependant coherent state after tracing over the bath variables. Also in short-time limit, a temperature-dependant effective Hamiltonian for the open system characterizes the decay process of the open system

    Protein engineering of cytochrome c by semisynthesis: substitutions at Glutamic acid 66

    Get PDF
    We have used protein semisynthesis to prepare four analogues of horse cytochrome c, in which the glutamic acid residue at position 66 has been removed and replaced by norvaline, glutamine, lysine and, as a methodological control, glutamic acid. This residue is quite strongly conserved in mitochondrial cytochrome c, and forms part of a cluster of acidic residues that occurs in all cytochromes c but whose function is obscure. Comparative studies of the physical and biochemical properties of the analogues have now disclosed two specific roles for Glu66 in the protein. It contributes significantly to the stabilization of the active conformation of the protein, probably by salt bridge formation, and it appears to participate in the redox-state-dependent ATP-binding site of cytochrome c. Our results also support two general views of the role of surface charged residues in cytochrome c, namely that their disposition influences both redox potential, through the electrostatic field felt at the redox centre, and the kinetics of electron transfer, through the dipole moment they generat

    Evaluation of the efficacy of anthelmintics against parafilariosis in cattle

    Get PDF
    Parafilariosis was first described in South Africa in 1964, thereafter being discovered at numerous localities in the country. When it became obvious that Parafilaria bovicola, for which no treatment was known, caused considerable economic losses, trials involving a series of compounds were conducted to identify candidate remedies. This paper describes an anthelmintic test for evaluating the efficacy of compounds for registration for field use. Recovery of Parafilaria worms is impractical for anthelmintic testing, and consequently the lesion sizes of treated and control groups of cattle are compared statistically, using appropriate statistical tests. The seasonal incidence of mature worm infection in cattle in South Africa is such that trials should commence after June and be completed before the end of January, allowing a lapse of 70 days between treatment and slaughter for resolution of the lesions. The presently available parafilaricidal compounds while of value for treating slaughter stock, when used alone will probably not be effective for control of infection in the field.The articles have been scanned in colour with a HP Scanjet 5590; 600dpi. Adobe Acrobat XI Pro was used to OCR the text and also for the merging and conversion to the final presentation PDF-format.mn201

    Feedback-control of quantum systems using continuous state-estimation

    Full text link
    We present a formulation of feedback in quantum systems in which the best estimates of the dynamical variables are obtained continuously from the measurement record, and fed back to control the system. We apply this method to the problem of cooling and confining a single quantum degree of freedom, and compare it to current schemes in which the measurement signal is fed back directly in the manner usually considered in existing treatments of quantum feedback. Direct feedback may be combined with feedback by estimation, and the resulting combination, performed on a linear system, is closely analogous to classical LQG control theory with residual feedback.Comment: 12 pages, multicol revtex, revised and extende

    Climate instability and tipping points in the Late Devonian: Detection of the Hangenberg Event in an open oceanic island arc in the Central Asian Orogenic Belt

    Get PDF
    Sedimentary petrology and trace element geochemistry indicate that the Late Devonian to Early Carboniferous Heishantou Formation near Boulongour Reservoir (NW Xinjiang, China) was deposited on a steep slope, mid-latitude accreting island arc complex in an open oceanic system. Bulk 87Sr/86Sr ratios show excursion patterns that are consistent with excursions at the Devonian-Carboniferous (D-C) boundary in epicontinental margin sediments. Sedimentation rates for the Boulongour Reservoir sediments show highly variable rates that range from 0.5 cm/ky to 10 cm/ky, consistent with other Late Devonian sections and modern arc environments. Multiple whole rock geochemical proxies for anoxia and the size and distribution of pyrite framboids suggest the presence of the Hangenberg Event in the sediments associated with the D-C boundary, despite the lack of visible black shale. The presence of anoxia in an open ocean, island arc environment cannot be explained by upwelling of anoxic bottom waters at this paleolatitude, but can be explained by the global infliction of oceanic shallow water eutrophication on to a climate system in distress

    Removal of a single photon by adaptive absorption

    Get PDF
    We present a method to remove, using only linear optics, exactly one photon from a field-mode. This is achieved by putting the system in contact with an absorbing environment which is under continuous monitoring. A feedback mechanism then decouples the system from the environment as soon as the first photon is absorbed. We propose a possible scheme to implement this process and provide the theoretical tools to describe it

    Dynamics with Infinitely Many Derivatives: The Initial Value Problem

    Full text link
    Differential equations of infinite order are an increasingly important class of equations in theoretical physics. Such equations are ubiquitous in string field theory and have recently attracted considerable interest also from cosmologists. Though these equations have been studied in the classical mathematical literature, it appears that the physics community is largely unaware of the relevant formalism. Of particular importance is the fate of the initial value problem. Under what circumstances do infinite order differential equations possess a well-defined initial value problem and how many initial data are required? In this paper we study the initial value problem for infinite order differential equations in the mathematical framework of the formal operator calculus, with analytic initial data. This formalism allows us to handle simultaneously a wide array of different nonlocal equations within a single framework and also admits a transparent physical interpretation. We show that differential equations of infinite order do not generically admit infinitely many initial data. Rather, each pole of the propagator contributes two initial data to the final solution. Though it is possible to find differential equations of infinite order which admit well-defined initial value problem with only two initial data, neither the dynamical equations of p-adic string theory nor string field theory seem to belong to this class. However, both theories can be rendered ghost-free by suitable definition of the action of the formal pseudo-differential operator. This prescription restricts the theory to frequencies within some contour in the complex plane and hence may be thought of as a sort of ultra-violet cut-off.Comment: 40 pages, no figures. Added comments concerning fractional operators and the implications of restricting the contour of integration. Typos correcte

    High-Energy Aspects of Solar Flares: Overview of the Volume

    Full text link
    In this introductory chapter, we provide a brief summary of the successes and remaining challenges in understanding the solar flare phenomenon and its attendant implications for particle acceleration mechanisms in astrophysical plasmas. We also provide a brief overview of the contents of the other chapters in this volume, with particular reference to the well-observed flare of 2002 July 23Comment: This is the introductory article for a monograph on the physics of solar flares, inspired by RHESSI observations. The individual articles are to appear in Space Science Reviews (2011

    A Quantitative Model of Energy Release and Heating by Time-dependent, Localized Reconnection in a Flare with a Thermal Loop-top X-ray Source

    Full text link
    We present a quantitative model of the magnetic energy stored and then released through magnetic reconnection for a flare on 26 Feb 2004. This flare, well observed by RHESSI and TRACE, shows evidence of non-thermal electrons only for a brief, early phase. Throughout the main period of energy release there is a super-hot (T>30 MK) plasma emitting thermal bremsstrahlung atop the flare loops. Our model describes the heating and compression of such a source by localized, transient magnetic reconnection. It is a three-dimensional generalization of the Petschek model whereby Alfven-speed retraction following reconnection drives supersonic inflows parallel to the field lines, which form shocks heating, compressing, and confining a loop-top plasma plug. The confining inflows provide longer life than a freely-expanding or conductively-cooling plasma of similar size and temperature. Superposition of successive transient episodes of localized reconnection across a current sheet produces an apparently persistent, localized source of high-temperature emission. The temperature of the source decreases smoothly on a time scale consistent with observations, far longer than the cooling time of a single plug. Built from a disordered collection of small plugs, the source need not have the coherent jet-like structure predicted by steady-state reconnection models. This new model predicts temperatures and emission measure consistent with the observations of 26 Feb 2004. Furthermore, the total energy released by the flare is found to be roughly consistent with that predicted by the model. Only a small fraction of the energy released appears in the super-hot source at any one time, but roughly a quarter of the flare energy is thermalized by the reconnection shocks over the course of the flare. All energy is presumed to ultimately appear in the lower-temperature T<20 MK, post-flare loops
    corecore