3,799 research outputs found

    Nonlinear photon transport in a semiconductor waveguide-cavity system containing a single quantum dot: Anharmonic cavity-QED regime

    Full text link
    We present a semiconductor master equation technique to study the input/output characteristics of coherent photon transport in a semiconductor waveguide-cavity system containing a single quantum dot. We use this approach to investigate the effects of photon propagation and anharmonic cavity-QED for various dot-cavity interaction strengths, including weakly-coupled, intermediately-coupled, and strongly-coupled regimes. We demonstrate that for mean photon numbers much less than 0.1, the commonly adopted weak excitation (single quantum) approximation breaks down, even in the weak coupling regime. As a measure of the anharmonic multiphoton-correlations, we compute the Fano factor and the correlation error associated with making a semiclassical approximation. We also explore the role of electron--acoustic-phonon scattering and find that phonon-mediated scattering plays a qualitatively important role on the light propagation characteristics. As an application of the theory, we simulate a conditional phase gate at a phonon bath temperature of 2020 K in the strong coupling regime.Comment: To appear in PR

    Atom detection in a two-mode optical cavity with intermediate coupling: Autocorrelation studies

    Full text link
    We use an optical cavity in the regime of intermediate coupling between atom and cavity mode to detect single moving atoms. Degenerate polarization modes allow excitation of the atoms in one mode and collection of spontaneous emission in the other, while keeping separate the two sources of light; we obtain a higher confidence and efficiency of detection by adding cavity-enhanced Faraday rotation. Both methods greatly benefit from coincidence detection of photons, attaining fidelities in excess of 99% in less than 1 microsecond. Detailed studies of the second-order intensity autocorrelation function of light from the signal mode reveal evidence of antibunched photon emissions and the dynamics of single-atom transits.Comment: 10 pages, 10 figures, to be published in Phys. Rev.

    From quantum feedback to probabilistic error correction: Manipulation of quantum beats in cavity QED

    Full text link
    It is shown how to implement quantum feedback and probabilistic error correction in an open quantum system consisting of a single atom, with ground- and excited-state Zeeman structure, in a driven two-mode optical cavity. The ground state superposition is manipulated and controlled through conditional measurements and external fields, which shield the coherence and correct quantum errors. Modeling of an experimentally realistic situation demonstrates the robustness of the proposal for realization in the laboratory

    Phonon-dressed Mollow triplet in the regime of cavity-QED

    Full text link
    We study the resonance fluorescence spectra of a driven quantum dot placed inside a high QQ semiconductor cavity and interacting with an acoustic phonon bath. The dynamics is calculated using a time-convolutionless master equation obtained in the polaron frame. We demonstrate pronounced spectral broadening of the Mollow sidebands through cavity-emission which, for small cavity-coupling rates, increases quadratically with the Rabi frequency. However, for larger cavity coupling rates, this broadening dependence is found to be more complex. This field-dependent Mollow triplet broadening is primarily a consequence of the triplet peaks sampling different parts of the asymmetric phonon bath, and agrees directly with recent experiments with semiconductor micropillars. The influence from the detuned cavity photon bath and multi-photon effects is shown to play a qualitatively important role on the fluorescence spectra.Comment: 4 pages, 4 figure

    Multiple-time correlation functions for non-Markovian interaction: Beyond the Quantum Regression Theorem

    Full text link
    Multiple time correlation functions are found in the dynamical description of different phenomena. They encode and describe the fluctuations of the dynamical variables of a system. In this paper we formulate a theory of non-Markovian multiple-time correlation functions (MTCF) for a wide class of systems. We derive the dynamical equation of the {\it reduced propagator}, an object that evolve state vectors of the system conditioned to the dynamics of its environment, which is not necessarily at the vacuum state at the initial time. Such reduced propagator is the essential piece to obtain multiple-time correlation functions. An average over the different environmental histories of the reduced propagator permits us to obtain the evolution equations of the multiple-time correlation functions. We also study the evolution of MTCF within the weak coupling limit and it is shown that the multiple-time correlation function of some observables satisfy the Quantum Regression Theorem (QRT), whereas other correlations do not. We set the conditions under which the correlations satisfy the QRT. We illustrate the theory in two different cases; first, solving an exact model for which the MTCF are explicitly given, and second, presenting the results of a numerical integration for a system coupled with a dissipative environment through a non-diagonal interaction.Comment: Submitted (04 Jul 04

    Review of world experience and properties of materials for encapsulation of terrestrial photovoltaic arrays

    Get PDF
    Published and unpublished information relating to encapsulation systems and materials properties was collected by searching the literature and appropriate data bases (over 1,300 documents were selected and reviewed) and by personal contacts including site and company visits. A data tabulation summarizing world experience with terrestrial photovoltaic arrays (50 installations) is presented in the report. Based on criteria of properties, processability, availability, and cost, candidate materials were identified which have potential for use in encapsulation systems for arrays with a lifetime of over 20 years high reliability, an efficiency greater than 10 percent, a total price less than $500/kW, and a production capacity of 500,000 kW/yr. The recommended materials (all commercially available) include, depending upon the device design, various borosilicate and soda-lime glasses and numerous polymerics suitable for specific encapsulation system functions

    Effect of frequency mismatched photons in quantum information processing

    Full text link
    Many promising schemes for quantum information processing (QIP) rely on few-photon interference effects. In these proposals, the photons are treated as being indistinguishable particles. However, single photon sources are typically subject to variation from device to device. Thus the photons emitted from different sources will not be perfectly identical, and there will be some variation in their frequencies. Here, we analyse the effect of this frequency mismatch on QIP schemes. As examples, we consider the distributed QIP protocol proposed by Barrett and Kok, and Hong-Ou-Mandel interference which lies at the heart of many linear optical schemes for quantum computing. In the distributed QIP protocol, we find that the fidelity of entangled qubit states depends crucially on the time resolution of single photon detectors. In particular, there is no reduction in the fidelity when an ideal detector model is assumed, while reduced fidelities may be encountered when using realistic detectors with a finite response time. We obtain similar results in the case of Hong-Ou-Mandel interference -- with perfect detectors, a modified version of quantum interference is seen, and the visibility of the interference pattern is reduced as the detector time resolution is reduced. Our findings indicate that problems due to frequency mismatch can be overcome, provided sufficiently fast detectors are available.Comment: 14 pages, 8 figures. Comments welcome. v2: Minor changes. v3: Cleaned up 3 formatting error

    Methodology for designing accelerated aging tests for predicting life of photovoltaic arrays

    Get PDF
    A methodology for designing aging tests in which life prediction was paramount was developed. The methodology builds upon experience with regard to aging behavior in those material classes which are expected to be utilized as encapsulant elements, viz., glasses and polymers, and upon experience with the design of aging tests. The experiences were reviewed, and results are discussed in detail
    • …
    corecore