595 research outputs found

    From non-Brownian Functionals to a Fractional Schr\"odinger Equation

    Full text link
    We derive backward and forward fractional Schr\"odinger type of equations for the distribution of functionals of the path of a particle undergoing anomalous diffusion. Fractional substantial derivatives introduced by Friedrich and co-workers [PRL {\bf 96}, 230601 (2006)] provide the correct fractional framework for the problem at hand. In the limit of normal diffusion we recover the Feynman-Kac treatment of Brownian functionals. For applications, we calculate the distribution of occupation times in half space and show how statistics of anomalous functionals is related to weak ergodicity breaking.Comment: 5 page

    Transport in networks with multiple sources and sinks

    Full text link
    We investigate the electrical current and flow (number of parallel paths) between two sets of n sources and n sinks in complex networks. We derive analytical formulas for the average current and flow as a function of n. We show that for small n, increasing n improves the total transport in the network, while for large n bottlenecks begin to form. For the case of flow, this leads to an optimal n* above which the transport is less efficient. For current, the typical decrease in the length of the connecting paths for large n compensates for the effect of the bottlenecks. We also derive an expression for the average flow as a function of n under the common limitation that transport takes place between specific pairs of sources and sinks

    Defect formation and local gauge invariance

    Get PDF
    We propose a new mechanism for formation of topological defects in a U(1) model with a local gauge symmetry. This mechanism leads to definite predictions, which are qualitatively different from those of the Kibble-Zurek mechanism of global theories. We confirm these predictions in numerical simulations, and they can also be tested in superconductor experiments. We believe that the mechanism generalizes to more complicated theories.Comment: REVTeX, 4 pages, 2 figures. The explicit form of the Hamiltonian and the equations of motion added. To appear in PRL (http://prl.aps.org/

    Search in Complex Networks : a New Method of Naming

    Full text link
    We suggest a method for routing when the source does not posses full information about the shortest path to the destination. The method is particularly useful for scale-free networks, and exploits its unique characteristics. By assigning new (short) names to nodes (aka labelling) we are able to reduce significantly the memory requirement at the routers, yet we succeed in routing with high probability through paths very close in distance to the shortest ones.Comment: 5 pages, 4 figure

    Limited path percolation in complex networks

    Full text link
    We study the stability of network communication after removal of q=1pq=1-p links under the assumption that communication is effective only if the shortest path between nodes ii and jj after removal is shorter than aij(a1)a\ell_{ij} (a\geq1) where ij\ell_{ij} is the shortest path before removal. For a large class of networks, we find a new percolation transition at p~c=(κo1)(1a)/a\tilde{p}_c=(\kappa_o-1)^{(1-a)/a}, where κo/\kappa_o\equiv / and kk is the node degree. Below p~c\tilde{p}_c, only a fraction NδN^{\delta} of the network nodes can communicate, where δa(1logp/log(κo1))<1\delta\equiv a(1-|\log p|/\log{(\kappa_o-1)}) < 1, while above p~c\tilde{p}_c, order NN nodes can communicate within the limited path length aija\ell_{ij}. Our analytical results are supported by simulations on Erd\H{o}s-R\'{e}nyi and scale-free network models. We expect our results to influence the design of networks, routing algorithms, and immunization strategies, where short paths are most relevant.Comment: 11 pages, 3 figures, 1 tabl

    Trapping in complex networks

    Full text link
    We investigate the trapping problem in Erdos-Renyi (ER) and Scale-Free (SF) networks. We calculate the evolution of the particle density ρ(t)\rho(t) of random walkers in the presence of one or multiple traps with concentration cc. We show using theory and simulations that in ER networks, while for short times ρ(t)exp(Act)\rho(t) \propto \exp(-Act), for longer times ρ(t)\rho(t) exhibits a more complex behavior, with explicit dependence on both the number of traps and the size of the network. In SF networks we reveal the significant impact of the trap's location: ρ(t)\rho(t) is drastically different when a trap is placed on a random node compared to the case of the trap being on the node with the maximum connectivity. For the latter case we find \rho(t)\propto\exp\left[-At/N^\frac{\gamma-2}{\gamma-1}\av{k}\right] for all γ>2\gamma>2, where γ\gamma is the exponent of the degree distribution P(k)kγP(k)\propto k^{-\gamma}.Comment: Appendix adde

    Testing the Kibble-Zurek Scenario with Annular Josephson Tunnel Junctions

    Full text link
    In parallel with Kibble's description of the onset of phase transitions in the early universe, Zurek has provided a simple picture for the onset of phase transitions in condensed matter systems, strongly supported by agreement with experiments in He3. In this letter we show how experiments with annular Josephson tunnel Junctions can and do provide further support for this scenario.Comment: Revised version with correct formula for the Swihart velocity. The results are qualitatively the same as with the previous version but differ quantitatively. 4 pages, RevTe

    DNA hybridization catalysts and catalyst circuits

    Get PDF
    Practically all of life's molecular processes, from chemical synthesis to replication, involve enzymes that carry out their functions through the catalysis of metastable fuels into waste products. Catalytic control of reaction rates will prove to be as useful and ubiquitous in DNA nanotechnology as it is in biology. Here we present experimental results on the control of the decay rates of a metastable DNA "fuel". We show that the fuel complex can be induced to decay with a rate about 1600 times faster than it would decay spontaneously. The original DNA hybridization catalyst [15] achieved a maximal speed-up of roughly 30. The fuel complex discussed here can therefore serve as the basic ingredient for an improved DNA hybridization catalyst. As an example application for DNA hybridization catalysts, we propose a method for implementing arbitrary digital logic circuits

    Priority diffusion model in lattices and complex networks

    Full text link
    We introduce a model for diffusion of two classes of particles (AA and BB) with priority: where both species are present in the same site the motion of AA's takes precedence over that of BB's. This describes realistic situations in wireless and communication networks. In regular lattices the diffusion of the two species is normal but the BB particles are significantly slower, due to the presence of the AA particles. From the fraction of sites where the BB particles can move freely, which we compute analytically, we derive the diffusion coefficients of the two species. In heterogeneous networks the fraction of sites where BB is free decreases exponentially with the degree of the sites. This, coupled with accumulation of particles in high-degree nodes leads to trapping of the low priority particles in scale-free networks.Comment: 5 pages, 3 figure
    corecore