35 research outputs found

    CX3CL1 reduces neurotoxicity and microglial activation in a rat model of Parkinson\u27s disease

    Get PDF
    BACKGROUND: Parkinson\u27s disease is characterized by a progressive loss of dopaminergic neurons in the substantia nigra. The cause of the neurodegeneration is unknown. Neuroinflammation has been clearly shown in Parkinson\u27s disease and may be involved in the progressive nature of the disease. Microglia are capable of producing neuronal damage through the production of bioactive molecules such as cytokines, as well as reactive oxygen species (ROS), and nitric oxide (NO). The inflammatory response in the brain is tightly regulated at multiple levels. One form of immune regulation occurs via neurons. Fractalkine (CX3CL1), produced by neurons, suppresses the activation of microglia. CX3CL1 is constitutively expressed. It is not known if addition of exogenous CX3CL1 beyond otherwise physiologically normal levels could decrease microglia activation and thereby minimize the secondary neurodegeneration following a neurotoxic insult. METHODS: The intrastriatal 6-hydroxydopamine (6-OHDA) rat model of Parkinson disease, was used to test the hypothesis that exogenous CX3CL1 could be neuroprotective. Treatment with recombinant CX3CL1 was delivered to the striatum by an osmotic minipump for 28 days beginning 7 days after the initial insult. Unbiased stereological methods were used to quantify the lesion size in the striatum, the amount of neuronal loss in the substantia nigra, and the amount of microglia activation. RESULTS: As hypothesized, CX3CL1 was able to suppress this microglia activation. The reduced microglia activation was found to be neuroprotective as the CX3CL1 treated rats had a smaller lesion volume in the striatum and importantly significantly fewer neurons were lost in the CX3CL1 treated rats. CONCLUSION: These findings demonstrated that CX3CL1 plays a neuroprotective role in 6-OHDA-induced dopaminergic lesion and it might be an effective therapeutic target for many neurodegenerative diseases, including Parkinson disease and Alzheimer disease, where inflammation plays an important role

    CX3CL1 reduces neurotoxicity and microglial activation in a rat model of Parkinson\u27s disease

    Get PDF
    BACKGROUND: Parkinson\u27s disease is characterized by a progressive loss of dopaminergic neurons in the substantia nigra. The cause of the neurodegeneration is unknown. Neuroinflammation has been clearly shown in Parkinson\u27s disease and may be involved in the progressive nature of the disease. Microglia are capable of producing neuronal damage through the production of bioactive molecules such as cytokines, as well as reactive oxygen species (ROS), and nitric oxide (NO). The inflammatory response in the brain is tightly regulated at multiple levels. One form of immune regulation occurs via neurons. Fractalkine (CX3CL1), produced by neurons, suppresses the activation of microglia. CX3CL1 is constitutively expressed. It is not known if addition of exogenous CX3CL1 beyond otherwise physiologically normal levels could decrease microglia activation and thereby minimize the secondary neurodegeneration following a neurotoxic insult. METHODS: The intrastriatal 6-hydroxydopamine (6-OHDA) rat model of Parkinson disease, was used to test the hypothesis that exogenous CX3CL1 could be neuroprotective. Treatment with recombinant CX3CL1 was delivered to the striatum by an osmotic minipump for 28 days beginning 7 days after the initial insult. Unbiased stereological methods were used to quantify the lesion size in the striatum, the amount of neuronal loss in the substantia nigra, and the amount of microglia activation. RESULTS: As hypothesized, CX3CL1 was able to suppress this microglia activation. The reduced microglia activation was found to be neuroprotective as the CX3CL1 treated rats had a smaller lesion volume in the striatum and importantly significantly fewer neurons were lost in the CX3CL1 treated rats. CONCLUSION: These findings demonstrated that CX3CL1 plays a neuroprotective role in 6-OHDA-induced dopaminergic lesion and it might be an effective therapeutic target for many neurodegenerative diseases, including Parkinson disease and Alzheimer disease, where inflammation plays an important role

    Peripheral injection of human umbilical cord blood stimulates neurogenesis in the aged rat brain

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Neurogenesis continues to occur throughout life but dramatically decreases with increasing age. This decrease is mostly related to a decline in proliferative activity as a result of an impoverishment of the microenvironment of the aged brain, including a reduction in trophic factors and increased inflammation.</p> <p>Results</p> <p>We determined that human umbilical cord blood mononuclear cells (UCBMC) given peripherally, by an intravenous injection, could rejuvenate the proliferative activity of the aged neural stem/progenitor cells. This increase in proliferation lasted for at least 15 days after the delivery of the UCBMC. Along with the increase in proliferation following UCBMC treatment, an increase in neurogenesis was also found in the aged animals. The increase in neurogenesis as a result of UCBMC treatment seemed to be due to a decrease in inflammation, as a decrease in the number of activated microglia was found and this decrease correlated with the increase in neurogenesis.</p> <p>Conclusion</p> <p>The results demonstrate that a single intravenous injection of UCBMC in aged rats can significantly improve the microenvironment of the aged hippocampus and rejuvenate the aged neural stem/progenitor cells. Our results raise the possibility of a peripherally administered cell therapy as an effective approach to improve the microenvironment of the aged brain.</p

    Time-Dependent Effects of CX3CR1 in a Mouse Model of Mild Traumatic Brain Injury

    Get PDF
    BACKGROUND: Neuroinflammation is an important secondary mechanism that is a key mediator of the long-term consequences of neuronal injury that occur in traumatic brain injury (TBI). Microglia are highly plastic cells with dual roles in neuronal injury and recovery. Recent studies suggest that the chemokine fractalkine (CX3CL1, FKN) mediates neural/microglial interactions via its sole receptor CX3CR1. CX3CL1/CX3CR1 signaling modulates microglia activation, and depending upon the type and time of injury, either protects or exacerbates neurological diseases. METHODS: In this study, mice deficient in CX3CR1 were subjected to mild controlled cortical impact injury (CCI), a model of TBI. We evaluated the effects of genetic deletion of CX3CR1 on histopathology, cell death/survival, microglia activation, and cognitive function for 30 days post-injury. RESULTS: During the acute post-injury period (24 h-15 days), motor deficits, cell death, and neuronal cell loss were more profound in injured wild-type than in CX3CR1-/- mice. In contrast, during the chronic period of 30 days post-TBI, injured CX3CR1-/- mice exhibited greater cognitive dysfunction and increased neuronal death than wild-type mice. The protective and deleterious effects of CX3CR1 were associated with changes in microglia phenotypes; during the acute phase CX3CR1-/- mice showed a predominant anti-inflammatory M2 microglial response, with increased expression of Ym1, CD206, and TGFΞ². In contrast, increased M1 phenotypic microglia markers, Marco, and CD68 were predominant at 30 days post-TBI. CONCLUSION: Collectively, these novel data demonstrate a time-dependent role for CX3CL1/CX3CR1 signaling after TBI and suggest that the acute and chronic responses to mild TBI are modulated in part by distinct microglia phenotypes

    Spirulina Promotes Stem Cell Genesis and Protects against LPS Induced Declines in Neural Stem Cell Proliferation

    Get PDF
    Adult stem cells are present in many tissues including, skin, muscle, adipose, bone marrow, and in the brain. Neuroinflammation has been shown to be a potent negative regulator of stem cell and progenitor cell proliferation in the neurogenic regions of the brain. Recently we demonstrated that decreasing a key neuroinflammatory cytokine IL-1Ξ² in the hippocampus of aged rats reversed the age-related cognitive decline and increased neurogenesis in the age rats. We also have found that nutraceuticals have the potential to reduce neuroinflammation, and decrease oxidative stress. The objectives of this study were to determine if spirulina could protect the proliferative potential of hippocampal neural progenitor cells from an acute systemic inflammatory insult of lipopolysaccharide (LPS). To this end, young rats were fed for 30 days a control diet or a diet supplemented with 0.1% spirulina. On day 28 the rats were given a single i.p. injection of LPS (1 mg/kg). The following day the rats were injected with BrdU (50 mg/kg b.i.d. i.p.) and were sacrificed 24 hours after the first injection of BrdU. Quantification of the BrdU positive cells in the subgranular zone of the dentate gyrus demonstrated a decrease in proliferation of the stem/progenitor cells in the hippocampus as a result of the LPS insult. Furthermore, the diet supplemented with spirulina was able to negate the LPS induced decrease in stem/progenitor cell proliferation. In a second set of studies we examined the effects of spirulina either alone or in combination with a proprietary formulation (NT-020) of blueberry, green tea, vitamin D3 and carnosine on the function of bone marrow and CD34+ cells in vitro. Spirulina had small effects on its own and more than additive effects in combination with NT-020 to promote mitochondrial respiration and/or proliferation of these cells in culture. When examined on neural stem cells in culture spirulina increased proliferation at baseline and protected against the negative influence of TNFΞ± to reduce neural stem cell proliferation. These results support the hypothesis that a diet enriched with spirulina and other nutraceuticals may help protect the stem/progenitor cells from insults

    Human Umbilical Cord Blood Treatment in a Mouse Model of ALS: Optimization of Cell Dose

    Get PDF
    Amyotrophic Lateral Sclerosis (ALS) is a multicausal disease characterized by motor neuron degeneration in the spinal cord and brain. Cell therapy may be a promising new treatment for this devastating disorder. We recently showed that a single low dose (10(6) cells) of mononuclear human umbilical cord blood (MNC hUCB) cells administered intravenously to G93A mice delayed symptom progression and modestly prolonged lifespan. The aim of this pre-clinical translation study is to optimize the dose of MNC hUCB cells to retard disease progression in G93A mice. Three different doses of MNC hUCB cells, 10x10(6), 25x10(6) and 50x10(6), were administered intravenously into pre-symptomatic G93A mice. Motor function tests and various assays to determine cell effects were performed on these mice.Our results showed that a cell dose of 25x10(6) cells significantly increased lifespan of mice by 20-25% and delayed disease progression by 15%. The most beneficial effect on decreasing pro-inflammatory cytokines in the brain and spinal cord was found in this group of mice. Human Th2 cytokines were found in plasma of mice receiving 25x10(6) cells, although prevalent human Th1 cytokines were indicated in mice with 50x10(6) cells. High response of splenic cells to mitogen (PHA) was indicated in mice receiving 25x10(6) (mainly) and 10x10(6) cells. Significantly increased lymphocytes and decreased neutrophils in the peripheral blood were found only in animals receiving 25x10(6) cells. Stable reduction in microglia density in both cervical and lumbar spinal cords was also noted in mice administered with 25x10(6) cells.These results demonstrate that treatment for ALS with an appropriate dose of MNC hUCB cells may provide a neuroprotective effect for motor neurons through active involvement of these cells in modulating the host immune inflammatory system response

    Serotonergic activation stimulates the pituitary-adrenal axis and alters interleukin-1 mRNA expression in rat brain

    No full text
    Interactions between neurotransmitters and immunomodulators within the central nervous system may be functionally relevant for communication between the immune system and the brain. Previous studies indicate that cytokines such as interleukin-1 (IL-1) alter activity of the serotonergic system at multiple levels. This study tested the hypothesis that serotonergic activation modulates cytokine mRNA expression in brain. Serotonergic activation was induced by injecting rats intraperitoneally (i.p.) prior to dark onset with the serotonin precursor -5-hydroxytryptophan (5-HTP; 100 mg/kg). Cytokine mRNA expression in discrete brain regions at selected time points was determined by means of ribonuclease protection assay. Plasma corticosterone concentrations were also measured to determine if the hypothalamic-pituitary-adrenal axis is activated in response to this treatment, which potentially could exert feedback regulating cytokine message expression in brain. Plasma corticosterone was elevated for 4 h after 5-HTP administration. At this time IL-1a mRNA expression was reduced in the hippocampus, hypothalamus, and brainstem, and IL-1b mRNA was reduced in the hippocampus. Six hours after 5-HTP injection, IL-1b mRNA increased in the hypothalamus. These results show that activation of the serotonergic system affects cytokine message expression in rat brain, possibly by actions of corticosterone

    Methods of treating epilepsy using neural stem cells that express nanog, SSEA-4, OCT-4, MIR-34B, MIR-34C and MIR-592

    No full text
    Provided herein is a method of diagnosing or prognosing an epilepsy or epilepsy-related disorder. Also provided herein is a method of treating an epilepsy or epilepsy-related disorder. Further provided are non-epileptic and epileptic neural stem cells and cell cultures
    corecore