387 research outputs found

    Estimation of hydraulic conductivity and its uncertainty from grain-size data using GLUE and artificial neural networks

    Full text link
    peer reviewedaudience: researcher, professionalVarious approaches exist to relate saturated hydraulic conductivity (Ks) to grain-size data. Most methods use a single grain-size parameter and hence omit the information encompassed by the entire grain-size distribution. This study compares two data-driven modelling methods, i.e.multiple linear regression and artificial neural networks, that use the entire grain-size distribution data as input for Ks prediction. Besides the predictive capacity of the methods, the uncertainty associated with the model predictions is also evaluated, since such information is important for stochastic groundwater flow and contaminant transport modelling. Artificial neural networks (ANNs) are combined with a generalized likelihood uncertainty estimation (GLUE) approach to predict Ks from grain-size data. The resulting GLUE-ANN hydraulic conductivity predictions and associated uncertainty estimates are compared with those obtained from the multiple linear regression models by a leave-one-out cross-validation. The GLUE-ANN ensemble prediction proved to be slightly better than multiple linear regression. The prediction uncertainty, however, was reduced by half an order of magnitude on average, and decreased at most by an order of magnitude. This demonstrates that the proposed method outperforms classical data-driven modelling techniques. Moreover, a comparison with methods from literature demonstrates the importance of site specific calibration. The dataset used for this purpose originates mainly from unconsolidated sandy sediments of the Neogene aquifer, northern Belgium. The proposed predictive models are developed for 173 grain-size -Ks pairs. Finally, an application with the optimized models is presented for a borehole lacking Ks data

    Differential cross sections and spin density matrix elements for the reaction gamma p -> p omega

    Full text link
    High-statistics differential cross sections and spin density matrix elements for the reaction gamma p -> p omega have been measured using the CLAS at Jefferson Lab for center-of-mass (CM) energies from threshold up to 2.84 GeV. Results are reported in 112 10-MeV wide CM energy bins, each subdivided into cos(theta_CM) bins of width 0.1. These are the most precise and extensive omega photoproduction measurements to date. A number of prominent structures are clearly present in the data. Many of these have not previously been observed due to limited statistics in earlier measurements

    First Measurement of Transferred Polarization in the Exclusive e p --> e' K+ Lambda Reaction

    Full text link
    The first measurements of the transferred polarization for the exclusive ep --> e'K+ Lambda reaction have been performed in Hall B at the Thomas Jefferson National Accelerator Facility using the CLAS spectrometer. A 2.567 GeV electron beam was used to measure the hyperon polarization over a range of Q2 from 0.3 to 1.5 (GeV/c)2, W from 1.6 to 2.15 GeV, and over the full center-of-mass angular range of the K+ meson. Comparison with predictions of hadrodynamic models indicates strong sensitivity to the underlying resonance contributions. A non-relativistic quark model interpretation of our data suggests that the s-sbar quark pair is produced with spins predominantly anti-aligned. Implications for the validity of the widely used 3P0 quark-pair creation operator are discussed.Comment: 6 pages, 4 figure

    Onset of asymptotic scaling in deuteron photodisintegration

    Full text link
    We investigate the transition from the nucleon-meson to quark-gluon description of the strong interaction using the photon energy dependence of the d(γ,p)nd(\gamma,p)n differential cross section for photon energies above 0.5 GeV and center-of-mass proton angles between 30∘30^{\circ} and 150∘150^{\circ}. A possible signature for this transition is the onset of cross section s−11s^{-11} scaling with the total energy squared, ss, at some proton transverse momentum, PTP_T. The results show that the scaling has been reached for proton transverse momentum above about 1.1 GeV/c. This may indicate that the quark-gluon regime is reached above this momentum.Comment: Accepted by PRL; 5 pages, 2 figure

    Single pi+ Electroproduction on the Proton in the First and Second Resonance Regions at 0.25GeV^2 < Q^2 < 0.65GeV^2 Using CLAS

    Full text link
    The ep -> e'pi^+n reaction was studied in the first and second nucleon resonance regions in the 0.25 GeV^2 < Q^2 < 0.65 GeV^2 range using the CLAS detector at Thomas Jefferson National Accelerator Facility. For the first time the absolute cross sections were measured covering nearly the full angular range in the hadronic center-of-mass frame. The structure functions sigma_TL, sigma_TT and the linear combination sigma_T+epsilon*sigma_L were extracted by fitting the phi-dependence of the measured cross sections, and were compared to the MAID and Sato-Lee models.Comment: Accepted for publication in PR

    Observation of an Exotic S=+1S=+1 Baryon in Exclusive Photoproduction from the Deuteron

    Full text link
    In an exclusive measurement of the reaction Îłd→K+K−pn\gamma d \to K^+ K^- p n, a narrow peak that can be attributed to an exotic baryon with strangeness S=+1S=+1 is seen in the K+nK^+n invariant mass spectrum. The peak is at 1.542±0.0051.542\pm 0.005 GeV/c2^2 with a measured width of 0.021 GeV/c2^2 FWHM, which is largely determined by experimental mass resolution. The statistical significance of the peak is 5.2±0.6σ5.2 \pm 0.6 \sigma. The mass and width of the observed peak are consistent with recent reports of a narrow S=+1S=+1 baryon by other experimental groups.Comment: 5 pages, 5 figure

    Measurement of Beam-Spin Asymmetries for Deep Inelastic π+\pi^+ Electroproduction

    Full text link
    We report the first evidence for a non-zero beam-spin azimuthal asymmetry in the electroproduction of positive pions in the deep-inelastic region. Data have been obtained using a polarized electron beam of 4.3 GeV with the CLAS detector at the Thomas Jefferson National Accelerator Facility (JLab). The amplitude of the sinâĄÏ•\sin\phi modulation increases with the momentum of the pion relative to the virtual photon, zz, with an average amplitude of 0.038±0.005±0.0030.038 \pm 0.005 \pm 0.003 for 0.5<z<0.80.5 < z < 0.8 range.Comment: 5 pages, RevTEX4, 3 figures, 2 table

    Observation of Nuclear Scaling in the A(e,eâ€Č)A(e,e^{\prime}) Reaction at xB>x_B>1

    Full text link
    The ratios of inclusive electron scattering cross sections of 4^4He, 12^{12}C, and 56^{56}Fe to 3^3He have been measured for the first time. It is shown that these ratios are independent of xBx_B at Q2>^2>1.4 (GeV/c)2^2 for xB>x_B> 1.5 where the inclusive cross section depends primarily on the high-momentum components of the nuclear wave function. The observed scaling shows that the momentum distributions at high-momenta have the same shape for all nuclei and differ only by a scale factor. The observed onset of the scaling at Q2>^2>1.4 and xB>x_B >1.5 is consistent with the kinematical expectation that two nucleon short range correlations (SRC) are dominate the nuclear wave function at pm≳p_m\gtrsim 300 MeV/c. The values of these ratios in the scaling region can be related to the relative probabilities of SRC in nuclei with A≄\ge3. Our data demonstrate that for nuclei with A≄\geq12 these probabilities are 5-5.5 times larger than in deuterium, while for 4^4He it is larger by a factor of about 3.5.Comment: 11 pages, 10 figure

    Two-Nucleon Momentum Distributions Measured in 3He(e,e'pp)n

    Full text link
    We have measured the 3He(e,e'pp)n reaction at 2.2 GeV over a wide kinematic range. The kinetic energy distribution for `fast' nucleons (p > 250 MeV/c) peaks where two nucleons each have 20% or less, and the third nucleon has most of the transferred energy. These fast pp and pn pairs are back-to-back with little momentum along the three-momentum transfer, indicating that they are spectators. Experimental and theoretical evidence indicates that we have measured distorted two-nucleon momentum distributions by striking the third nucleon and detecting the spectator correlated pair.Comment: 6 pages, 5 figures, submitted to PR
    • 

    corecore