20 research outputs found

    Air/methane mixture ignition with Multi-Walled Carbon Nanotubes (MWCNTs) and comparison with spark ignition

    Get PDF
    The possibility to ignite the single wall carbon nanotubes (SWCNTs) containing impurities of iron in atmosphere once exposed to the radiation of a flash camera was observed for the first time in 2002. Afterwards, it was proposed to exploit this property in order to use nanostructured materials as ignition agents for fuel mixtures. Finally, in 2011 it was shown that SWCNTs can be effectively used as ignition source for an air/ethylene mixture filling a constant volume combustion chamber; the observed combustion presented the characteristics of a homogeneous-like combustion. In this paper a system for the ignition of an air/methane mixture is proposed, based on the exposition of multi wall carbon nanotubes (MWCNTs) to a low consumption flash camera. Namely, several experiments have been run in which 20 mg of MWCNTs, containing 75% in weight of ferrocene, have been added to an air/methane fuel mixture inside a constant volume combustion chamber. The mixture has been heated up to 373 K and the onset pressure was set equal to 3 bar. The experiments have been run varying the equivalence ratio in the range 1–2. The combustion process so realized has been compared to that obtained igniting the mixture with a traditional spark as in spark ignition engines. The comparison has been based on chamber pressure measurement as well as combustion process images, both sampled at a frequency equal to 2,5 kHz for an overall duration of 1.8 s. Results confirm that the ignition triggered with MWCNTs leads to a homogeneous-like combustion, without observing a well-defined flame front propagation. The contrary is observed, as expected, with the spark assisted ignition. Moreover, dynamic pressure measurements show that, compared to spark assisted ignition, the MWCNTs photo-ignition determines a more rapid pressure gradient and a higher peak pressure which corresponds to a higher energy release rate

    TRY plant trait database – enhanced coverage and open access

    Get PDF
    Plant traits—the morphological, anatomical, physiological, biochemical and phenological characteristics of plants—determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits—almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    Multi-Walled Carbon Nanotubes (MWCNTs) as ignition agents for air/methane mixtures

    No full text
    The possibility to ignite the Single Wall Carbon Nanotubes (SWCNTs) once exposed to the radiation of a flash camera, was observed for the first time in 2002. Subsequently, it was proposed to exploit this property in order to use nanostructured materials as ignition agents for fuel mixtures. Lastly, in 2011, it was shown that SWCNTs can be effectively used as ignition source for an air/ethylene mixture filling a constant volume combustion chamber; the observed combustion presented the characteristics of a homogeneous-like combustion. In the presented experimental activity, the potentiality of igniting an air/methane mixture by flashing Multi Wall Carbon Nanotubes (MWCNTs) has been exploited, and the results compared with those obtained igniting the mixture with a traditional spark plug. In detail, two types of tests have been carried out: the first, aiming at comparing the combustion process flashing a variable amount of nanoparticles introduced into the combustion chamber at fixed air/methane ratio; the second, at comparing the combustion process with the one obtained using a traditional engine spark plug, varying the air/methane ratio and at fixed amount of MWCNTs. During tests, the combustion process has been characterized measuring the pressure into the combustion chamber as well as acquiring images with a high-speed camera. The results confirm that the ignition triggered with MWCNTs leads to a faster combustion, without observing a well-defined flame front propagation, observed, as expected, with the spark assisted ignition. Moreover, dynamic pressure measurements show that the MWCNTs photo-ignition determines a more rapid pressure gradient and a higher heat release rate compared to spark assisted ignition

    Performance optimization of a Two-Stroke supercharged diesel engine for aircraft propulsion

    No full text
    In Two-Stroke engines, the cylinder filling efficiency is antithetical to the cylinder scavenging efficiency; moreover, both of them are influenced by geometric and thermodynamic parameters characterizing the design and operation of both the engine and the related supercharging system. Aim of this work is to provide several guidelines about the definition of design and operation parameters for a Two-Stroke two banks Uniflow diesel engine, supercharged with two sequential turbochargers and an aftercooler per bank, with the goal of either increasing the engine brake power at take-off or decreasing the engine fuel consumption in cruise conditions. The engine has been modeled with a 0D/1D modeling approach. Then, the model capability in describing the effect of several parameters on engine performance has been assessed comparing the results of 3D simulations with those of 0D/1D model. The validated 0D/1D model has been used to simulate the engine behavior varying several design and operation engine parameters (exhaust valves opening and closing angles and maximum valve lift, scavenging ports opening angle, distance between bottom edge of the scavenging ports and bottom dead center, area of the single scavenging port and number of ports, engine volumetric compression ratio, low and high pressure compressor pressure ratios, air/fuel ratio) on a wide range of possible values. The parameters most influencing the engine performance are then recognized and their effect on engine thermodynamic behavior is discussed. Finally, the system configurations leading to best engine power at sea level and lowest fuel consumption in cruise conditions - respectively +42% and -7% with respect to baseline - have been determined implementing a multicriteria optimization procedure

    Improvement of dual-fuel biodiesel-producer gas engine performance acting on biodiesel injection parameters and strategy

    No full text
    none4noDual-fuel biodiesel-producer gas combustion has shown potential in reducing nitric oxides and particulate emission levels compared to only diesel operation; however, engine overall efficiency is slightly penalized, while the main drawbacks are represented by the higher levels of total hydrocarbons and carbon monoxide emissions. In this work, the improvements in the combustion development deriving from the splitting of the liquid fuel injection at low loads have been assessed using a 0.51 L single-cylinder research diesel engine equipped with a high pressure common rail injection system and operated in dual-fuel mode. In this case, a synthetic producer gas was used as inducted gaseous fuel, while biodiesel was used as pilot fuel. Initially, the spray morphology was characterized in a constant-volume vessel for different values of injection duration and pressure, as well as vessel backpressure. Then, the experimental campaign, run on the engine at 1500 rpm, was divided in two sessions. During the former, only one pilot injection of constant fuel amount (11 mm3/cycle) was performed, the rail pressure was set equal to 500 or 1000 bar, the injection timing was varied in the range −50 Ă· 5 degrees crank angle after top dead center while the amount of gaseous fuel inducted in the cylinder was varied on three levels. During the latter, the pilot fuel amount, kept equal to the one pilot injection tests, was split in two smaller injections and the effect of the dwell between them – varied in the range 5 Ă·50 degrees crank angle – was investigated as well. The results of the first set of experiments revealed that pilot injection timing and pressure both affect the combustion development. This resulted in sensible variations on thermal and combustion efficiencies, and therefore on fuel conversion efficiency, the last one exhibiting higher values with pilot injection timing slightly advanced respect to top dead center and lower injection pressure. In these conditions, total hydrocarbons and carbon monoxide are lowered, while nitric oxides are increased. The amount of gas demonstrated to have asecondary effect on combustion development and emissions levels at the exhaust. Splitting pilot injection, demonstrated to be an effective way to increase fuel conversion efficiency and to reduce the levels of all the pollutant species compared to the single pilot injection strategy. Based on the extensive experimental activity described in this paper, a dwell ranging between 10 and 30 degrees of crank angle, combined with a first injection timing ranging between 35 and 20 degrees of crank angle before top dead center guarantee the highest fuel conversion efficiency and the lowest pollutants emission levels. Injection pressure confirmed to be a significant factor in affecting the combustion development, while a secondary effect was determined by the gaseous mass inducted in the cylinder.Ultimately, pilot injection splitting demonstrated to be an effective way for improving gaseous fuel combustion in dual-fuel mode at low load (lean mixture) conditions.mixedCarlucci, A.P.; Strafella, L.; Ficarella, A.; Laforgia, D.Carlucci, Antonio Paolo; Strafella, Luciano; Ficarella, Antonio; Laforgia, Domenic

    Combustion and emissions control in diesel-methane dual fuel engines: the effects of methane supply method combined with variable in-cylinder charge bulk motion

    No full text
    In this paper, the results of an extensive experimental campaign about dual fuel combustion development and the related pollutant emissions are reported, paying particular attention to the effect of both the in-cylinder charge bulk motion and methane supply method. A diesel common rail research engine was converted to operate in dual fuel mode and, by activating/deactivating the two different inlet valves of the engine (i.e. swirl and tumble), three different bulk flow structures of the charge were induced inside the cylinder. A methane port injection method was proposed, in which the gaseous fuel was injected into the inlet duct very close to the intake valves, in order to obtain a stratified-like air–fuel mixture up to the end of the compression stroke. For comparison purposes, a homogeneous-like air–fuel mixture was obtained injecting methane more upstream the intake line. Combining the different positions of the methane injector and the three possible bulk flow structures, seven different engine inlet setup were tested. In this way, it was possible to evaluate the effects on dual fuel combustion due to the interaction between methane injector position and charge bulk motion. In addition, methane injection pressure and diesel pilot injection parameters were varied setting the engine at two operating conditions. For some interesting low load tests, the combustion development was studied more in detail by means of direct observation of the process, using an in-cylinder endoscope and a digital CCD camera. Each combustion image was post-processed by a dedicated software, in order to extract only those portions with flame presence and to calculate an average luminance value over the whole frame. These luminance values, chosen as indicators of the combustion intensity, were represented over crank angle position and, then, an analysis of the resulting curves was performed. Results showed that the charge bulk motion associated to the swirl port, improving the charge mixing of the diesel spray and the propagation of the turbulent flame fronts, is capable to enhance the oxidation of air–methane mixture, both at low and high engine loads. Furthermore, at low loads, the analysis of combustion images and luminance curves showed that methane port injection can significantly affect the intensity and the spreading of the flame during dual fuel combustion, especially when a suitable in-cylinder bulk motion is obtained. Concerning the engine emissions, some correlations with what observed during the analysis of the combustion development were found. Furthermore, it was revealed that, for several combinations of the engine operating parameters, methane port injection was always associated to the lowest emission levels, demonstrating that this methane supply method is a very effective strategy to reduce unburned hydrocarbons and nitric oxides concentrations, especially when implemented with variable intake geometry systems

    Validazione Sperimentale di un Modello di Campo Acustico Generato da un’Installazione Eolica

    No full text
    La valutazione dell’impatto acustico generato da una installazione eolica richiede la conoscenza delle caratteristiche del suono emesso e le modalità con cui questo si propaga in campo aperto. Gli strumenti attualmente disponibili per tale analisi previsionale fanno riferimento, per la maggior parte, al modello standard proposto dalla ISO9613-2, e partono dall’assunto che una turbina eolica sia rappresentabile da una sorgente di rumore puntuale, la cui direttività ù tenuta in considerazione solo in modo approssimato. Per valutare le caratteristiche della direttività, infatti, non vi sono in letteratura sufficienti riscontri sperimentali che consentano di apprezzarne la reale efficacia e/o i limiti dei modelli che si stanno adoperando. Lo scopo del presente lavoro, quindi, ù validare, attraverso rilievi fonometrici eseguiti presso installazioni eoliche esistenti, un modello semplice che permetta di valutare ante operam il campo acustico prodotto da una installazione eolica tenendo in conto le caratteristiche di direttività del rumore emesso dalle turbine

    Morphological analysis of injected sprays of different bio-diesel fuels by using a common rail setup controlled by a programmable electronic system

    No full text
    Biodiesel fuels are increasingly attracting interest in the scientific community and in the world motor industry. The morphological analysis of injected sprays is a key factor to increase engine performances using new biodiesel fuels and to compare them with those related to the use of conventional fuels. In this paper, an experimental setup is realised to carry out test campaigns, in order to analyse and compare the spray injections of different fuel typologies. A PC-interfaced electronic system was realised for driving BOSCH injectors and for varying the injection pressure and opening time. Hence, the morphological analysis was performed for each tested fuel by characterising the shaperatio and penetration depth inside the velocimetric chamber. The results show higher penetration values for biodiesel fuels due to their viscosity and drops in superficial tension, which facilitate a deeper penetration compared to those obtained with conventional diesel fuels. Although used biodiesels contain only 20% of renewable vegetable-origin diesel fuels, the viscosity and superficial tension are slightly higher than those of petroleum diesel, thus determining a weak vaporisation and formation of larger drops. By knowing the morphological behaviour of sprays using biofuels and conventional fuel, it is possible, by using programmable electronic systems, to adjust and improve the spray parameters in order to obtain better engine performances. The results reported in this instance could be utilised by future research works for choosing the most suitable biofuel based on the desired morphological behaviour of the injected sprays
    corecore