1,461 research outputs found

    The effect of isotopic splitting on the bisector and inversions of the solar Ca II 854.2 nm line

    Full text link
    The Ca II 854.2 nm spectral line is a common diagnostic of the solar chromosphere. The average line profile shows an asymmetric core, and its bisector shows a characteristic inverse-C shape. The line actually consists of six components with slightly different wavelengths depending on the isotope of calcium. This isotopic splitting of the line has been taken into account in studies of non-solar stars, but never for the Sun. We performed non-LTE radiative transfer computations from three models of the solar atmosphere and show that the asymmetric line-core and inverse C-shape of the bisector of the 854.2 nm line can be explained by isotopic splitting. We confirm this finding by analysing observations and showing that the line asymmetry is present irrespective of conditions in the solar atmosphere. Finally, we show that inversions based on the Ca II 854.2 nm line should take the isotopic splitting into account, otherwise the inferred atmospheres will contain erroneous velocity gradients and temperatures.Comment: Accepted for ApJ

    On chromospheric heating during flux emergence in the solar atmosphere

    Full text link
    Context. The radiative losses in the solar chromosphere vary from 4~kW~m2^{-2} in the quiet Sun, to 20~kW~m2^{-2} in active regions. The mechanisms that transport non-thermal energy to and deposit it in the chromosphere are still not understood. Aims. We aim to investigate the atmospheric structure and heating of the solar chromosphere in an emerging flux region. Methods. We use observations taken with the CHROMIS and CRISP instruments on the Swedish 1-m Solar Telescope in the Ca II K, Ca II 854.2 nm, Hα\alpha, and Fe I 630.1 nm and 630.2 nm lines. We analyse the various line profiles and in addition perform multi-line, multi-species, non-Local Thermodynamic Equilibrium (non-LTE) inversions to estimate the spatial and temporal variation of the chromospheric structure. Results. We investigate which spectral features of Ca II K contribute to the frequency-integrated Ca II K brightness, which we use as a tracer of chromospheric radiative losses. The majority of the radiative losses are not associated with localized high-Ca II K-brightness events, but instead with a more gentle, spatially extended, and persistent heating. The frequency-integrated Ca II K brightness correlates strongly with the total linear polarization in the Ca II 854.2 nm line, while the Ca II K profile shapes indicate that the bulk of the radiative losses occur in the lower chromosphere. Non-LTE inversions indicate a transition from heating concentrated around photospheric magnetic elements below logτ500=3\log{\tau_{500}} =-3 to a more space-filling and time-persistent heating above logτ500=4\log{\tau_{500}} =-4. The inferred gas temperature at logτ500=3.8\log{\tau_{500}} =-3.8 correlates strongly with the total linear polarization in the Ca II 854.2 nm line, suggesting that that the heating rate correlates with the strength of the horizontal magnetic field in the low chromosphere.Comment: Accepted for publication by A&

    Second-harmonic generation in vortex-induced waveguides

    Full text link
    We study the second-harmonic generation and localization of light in a reconfigurable waveguide induced by an optical vortex soliton in a defocusing Kerr medium. We show that the vortex-induced waveguide greatly improves conversion efficiency from the fundamental to the second harmonic field.Comment: 3 pages, 4 figures, submitted to Optics Letter

    Three-dimensional modeling of the Ca II H&K lines in the solar atmosphere

    Full text link
    CHROMIS, a new imaging spectrometer at the Swedish 1-m Solar Telescope (SST), can observe the chromosphere in the H and K lines of Ca II at high spatial and spectral resolution. Accurate modeling as well as an understanding of the formation of these lines are needed to interpret the SST/CHROMIS observations. Such modeling is computationally challenging because these lines are influenced by strong departures from local thermodynamic equilibrium, three-dimensional radiative transfer, and partially coherent resonance scattering of photons. We aim to model the CaII H&K lines in 3D model atmospheres to understand their formation and to investigate their diagnostic potential for probing the chromosphere. We model the synthetic spectrum of Ca II using the radiative transfer code Multi3D in three different radiation-magnetohydrodynamic model atmospheres computed with the Bifrost code. We classify synthetic intensity profiles according to their shapes and study how their features are related to the physical properties in the model atmospheres. We investigate whether the synthetic data reproduce the observed spatially-averaged line shapes, center-to-limb variation and compare with SST/CHROMIS images. The spatially-averaged synthetic line profiles show too low central emission peaks, and too small separation between the peaks. The trends of the observed center-to-limb variation of the profiles properties are reproduced by the models. The Ca II H&K line profiles provide a temperature diagnostic of the temperature minimum and the temperature at the formation height of the emission peaks. The Doppler shift of the central depression is an excellent probe of the velocity in the upper chromosphere.Comment: 19 pages, 20 figures, accepted for publication by A&

    Chromospheric polarimetry through multi-line observations of the 850 nm spectral region

    Full text link
    Future solar missions and ground-based telescopes aim to understand the magnetism of the solar chromosphere. We performed a supporting study in Quintero Noda et al. (2016) focused on the infrared Ca II 8542 A line and we concluded that is one of the best candidates because it is sensitive to a large range of atmospheric heights, from the photosphere to the middle chromosphere. However, we believe that it is worth to try improving the results produced by this line observing additional spectral lines. In that regard, we examined the neighbour solar spectrum looking for spectral lines that could increase the sensitivity to the atmospheric parameters. Interestingly, we discovered several photospheric lines that greatly improve the photospheric sensitivity to the magnetic field vector. Moreover, they are located close to a second chromospheric line that also belongs to the Ca II infrared triplet, i.e. the Ca II 8498 A line, and enhances the sensitivity to the atmospheric parameters at chromospheric layers. We conclude that the lines in the vicinity of the Ca II 8542 A line not only increase its sensitivity to the atmospheric parameters at all layers, but also they constitute an excellent spectral window for chromospheric polarimetry.Comment: 11 pages, 8 figures, 1 tabl

    Dissecting bombs and bursts: non-LTE inversions of low-atmosphere reconnection in SST and IRIS observations

    Full text link
    Ellerman bombs and UV bursts are transient brightenings that are ubiquitously observed in the lower atmospheres of active and emerging flux regions. Here we present inversion results of SST/CRISP and CHROMIS, as well as IRIS data of such transient events. Combining information from the Mg II h & k, Si IV and Ca II 8542A and Ca II H & K lines, we aim to characterise their temperature and velocity stratification, as well as their magnetic field configuration. We find average temperature enhancements of a few thousand kelvin close to the classical temperature minimum, but localised peak temperatures of up to 10,000-15,000 K from Ca II inversions. Including Mg II generally dampens these temperature enhancements to below 8000 K, while Si IV requires temperatures in excess of 10,000 K at low heights, but may also be reproduced with secondary temperature enhancements of 35,000-60,000 K higher up. However, reproducing Si IV comes at the expense of overestimating the Mg II emission. The line-of-sight velocity maps show clear bi-directional jet signatures and strong correlation with substructure in the intensity images, with slightly larger velocities towards the observer than away. The magnetic field parameters show an enhancement of the horizontal field co-located with the brightenings at similar heights as the temperature increase. We are thus able to largely reproduce the observational properties of Ellerman bombs with UV burst signature with temperature stratifications peaking close to the classical temperature minimum. Correctly modelling the Si IV emission in agreement with all other diagnostics is, however, an outstanding issue. Accounting for resolution differences, fitting localised temperature enhancements and/or performing spatially-coupled inversions is likely necessary to obtain better agreement between all considered diagnostics.Comment: Accepted for publication in Astronomy & Astrophysics. 24 pages, 17 figure

    Chromospheric polarimetry through multi-line observations of the 850 nm spectral region II: A magnetic flux tube scenario

    Full text link
    In this publication we continue the work started in Quintero Noda et al. (2017) examining this time a numerical simulation of a magnetic flux tube concentration. Our goal is to study if the physical phenomena that take place in it, in particular, the magnetic pumping, leaves a specific imprint on the examined spectral lines. We find that the profiles from the interior of the flux tube are periodically dopplershifted following an oscillation pattern that is also reflected in the amplitude of the circular polarization signals. In addition, we analyse the properties of the Stokes profiles at the edges of the flux tube discovering the presence of linear polarization signals for the Ca II lines, although they are weak with an amplitude around 0.5% of the continuum intensity. Finally, we compute the response functions to perturbations in the longitudinal field and we estimate the field strength using the weak field approximation. Our results indicate that the height of formation of the spectral lines changes during the magnetic pumping process which makes the interpretation of the inferred magnetic field strength and its evolution more difficult. These results complement those from previous works demonstrating the capabilities and limitations of the 850 nm spectrum for chromospheric Zeeman polarimetry in a very dynamic and complex atmosphere.Comment: 12 pages, 12 figures, 0 tables, MNRAS main journal publicatio

    Linear and nonlinear waveguides induced by optical vortex solitons

    Full text link
    We study, numerically and analytically, linear and nonlinear waveguides induced by optical vortex solitons in a Kerr medium. Both fundamental and first-order guided modes are analyzed, as well as the cases of effectively defocusing and focusing nonlinearity.Comment: 3 pages, 3 figures, changed conten
    corecore