8,700 research outputs found

    Three-dimensional non-LTE radiative transfer computation of the Ca 8542 infrared line from a radiation-MHD simulation

    Full text link
    Interpretation of imagery of the solar chromosphere in the widely used \CaIIIR infrared line is hampered by its complex, three-dimensional and non-LTE formation. Forward modelling is required to aid understanding. We use a 3D non-LTE radiative transfer code to compute synthetic \CaIIIR images from a radiation-MHD simulation of the solar atmosphere spanning from the convection zone to the corona. We compare the simulation with observations obtained with the CRISP filter at the Swedish 1--m Solar Telescope. We find that the simulation reproduces dark patches in the blue line wing caused by Doppler shifts, brightenings in the line core caused by upward-propagating shocks and thin dark elongated structures in the line core that form the interface between upward and downward gas motion in the chromosphere. The synthetic line core is narrower than the observed one, indicating that the sun exhibits both more vigorous large-scale dynamics as well as small scale motions that are not resolved within the simulation, presumably owing to a lack of spatial resolution.Comment: accepted as ApJ lette

    Wave Propagation and Jet Formation in the Chromosphere

    Full text link
    We present the results of numerical simulations of wave propagation and jet formation in solar atmosphere models with different magnetic field configurations. The presence in the chromosphere of waves with periods longer than the acoustic cutoff period has been ascribed to either strong inclined magnetic fields, or changes in the radiative relaxation time. Our simulations include a sophisticated treatment of radiative losses, as well as fields with different strengths and inclinations. Using Fourier and wavelet analysis techniques, we investigate the periodicity of the waves that travel through the chromosphere. We find that the velocity signal is dominated by waves with periods around 5 minutes in regions of strong, inclined field, including at the edges of strong flux tubes where the field expands, whereas 3-minute waves dominate in regions of weak or vertically oriented fields. Our results show that the field inclination is very important for long-period wave propagation, whereas variations in the radiative relaxation time have little effect. Furthermore, we find that atmospheric conditions can vary significantly on timescales of a few minutes, meaning that a Fourier analysis of wave propagation can be misleading. Wavelet techniques take variations with time into account and are more suitable analysis tools. Finally, we investigate the properties of jets formed by the propagating waves once they reach the transition region, and find systematic differences between the jets in inclined field regions and those in vertical field regions, in agreement with observations of dynamic fibrils.Comment: 27 pages, 29 figures; accepted for publication in Astrophysical Journa

    The Theory of the Interleaving Distance on Multidimensional Persistence Modules

    Full text link
    In 2009, Chazal et al. introduced ϵ\epsilon-interleavings of persistence modules. ϵ\epsilon-interleavings induce a pseudometric dId_I on (isomorphism classes of) persistence modules, the interleaving distance. The definitions of ϵ\epsilon-interleavings and dId_I generalize readily to multidimensional persistence modules. In this paper, we develop the theory of multidimensional interleavings, with a view towards applications to topological data analysis. We present four main results. First, we show that on 1-D persistence modules, dId_I is equal to the bottleneck distance dBd_B. This result, which first appeared in an earlier preprint of this paper, has since appeared in several other places, and is now known as the isometry theorem. Second, we present a characterization of the ϵ\epsilon-interleaving relation on multidimensional persistence modules. This expresses transparently the sense in which two ϵ\epsilon-interleaved modules are algebraically similar. Third, using this characterization, we show that when we define our persistence modules over a prime field, dId_I satisfies a universality property. This universality result is the central result of the paper. It says that dId_I satisfies a stability property generalizing one which dBd_B is known to satisfy, and that in addition, if dd is any other pseudometric on multidimensional persistence modules satisfying the same stability property, then ddId\leq d_I. We also show that a variant of this universality result holds for dBd_B, over arbitrary fields. Finally, we show that dId_I restricts to a metric on isomorphism classes of finitely presented multidimensional persistence modules.Comment: Major revision; exposition improved throughout. To appear in Foundations of Computational Mathematics. 36 page

    Three Li-rich K giants: IRAS 12327-6523, IRAS 13539-4153, and IRAS 17596-3952

    Full text link
    We report on spectroscopic analyses of three K giants previously suggested to be Li-rich: IRAS 12327-6523, IRAS 13539-4153, and IRAS 17596-3952. High-resolution optical spectra and the LTE model atmospheres are used to derive the stellar parameters: (TeffT_{\rm eff}, log gg, [Fe/H]), elemental abundances, and the isotopic ratio 12^{12}C/13^{13}C. IRAS 13539-4153 shows an extremely high Li abundance of logϵ\log\epsilon(Li) \approx 4.2, a value ten times more than the present Li abundance in the local interstellar medium. This is the third highest Li abundance yet reported for a K giant. IRAS 12327-6523 shows a Li abundances of logϵ\log\epsilon(Li)\approx 1.4. IRAS 17596-3952 is a rapidly rotating (VsiniV{\sin i} \approx 35 km s1^{-1}) K giant with logϵ\log\epsilon(Li) \approx 2.2. Infrared photometry which shows the presence of an IR excess suggesting mass-loss. A comparison is made between these three stars and previously recognized Li-rich giants.Comment: 17 pages, 6 figures, accepted for A
    corecore