627 research outputs found

    Spectrum of the Y=2 Pentaquarks

    Full text link
    By assuming a mass formula for the spectrum of the Y=2 pentaquarks, where the chromo-magnetic interaction plays a main role, and identifying the lightest state with the Theta^+(1540), we predict a spectrum in good agreement with the few I=0 and I=1 candidates proposed in the past.Comment: 12 pages, 4 figures, LaTe

    The BCS Functional for General Pair Interactions

    Full text link
    The Bardeen-Cooper-Schrieffer (BCS) functional has recently received renewed attention as a description of fermionic gases interacting with local pairwise interactions. We present here a rigorous analysis of the BCS functional for general pair interaction potentials. For both zero and positive temperature, we show that the existence of a non-trivial solution of the nonlinear BCS gap equation is equivalent to the existence of a negative eigenvalue of a certain linear operator. From this we conclude the existence of a critical temperature below which the BCS pairing wave function does not vanish identically. For attractive potentials, we prove that the critical temperature is non-zero and exponentially small in the strength of the potential.Comment: Revised Version. To appear in Commun. Math. Phys

    The Role of the D13 (1520) Resonance in eta Electroproduction

    Full text link
    We investigate the electroproduction of eta mesons below a center of momentum energy of 1.6 GeV, with particular emphasis on the roles of the N*(1535) and N*(1520) resonances. Using the effective Lagrangian approach, we show that the transverse helicity amplitude of the N*(1535) can be extracted with good accuracy from the new eta electroproduction data, under reasonable assumptions for the strength of the longitudinal helicity amplitude. In addition, although the differential cross section is found to to have a small sensitivity to the N*(1520) resonance, it is shown that a recently completed double polarization experiment is very sensitive to this resonance.Comment: 7 pages, Revtex, 3 figure

    Some (further) Comments on the Theta(1540) Pentaquark

    Full text link
    Additional broader I=0 states in the KN channel near Θ+\Theta^+(1540) are expected in many models, making the absence of any signature in the K+^+-deuteron scattering data even more puzzling. In an ideal "three-body" picture the Θ\Theta is viewed as two compact ud(1)ud(2) 3ˉ\bar{3} color diquarks and an sˉ\bar{s} quark. A "QCD-type" inequality involving m(Θ+),m(Λ)m(\Theta^+), m(\Lambda), the mass of the Λ(1/2)\Lambda(1/2^-) L=1 excitation and that of a new I=0 tetraquark vector meson then follows. The inequality suggests a very light new vector meson, and is violated. We note that "associated production" of the pentaquark with another quadriquark or anti-pentaquark may be favored. This along with some estimates of the actual production cross sections suggest that the Θ\Theta can be found in BaBar or Belle e+^+-e^- colliders.Comment: 6 page

    Radiative Scalar Meson Decays in the Light-Front Quark Model

    Full text link
    We construct a relativistic 3P0^3P_0 wavefunction for scalar mesons within the framework of light-front quark model(LFQM). This scalar wavefunction is used to perform relativistic calculations of absolute widths for the radiative decay processes(0++)γγ,(0++)ϕγ(0^{++})\to\gamma\gamma,(0^{++})\to\phi\gamma, and (0++)ργ(0^{++})\to\rho\gamma which incorporate the effects of glueball-qqˉq\bar{q} mixing. The mixed physical states are assumed to be f0(1370),f0(1500)f_0(1370),f_0(1500),and f0(1710)f_0(1710) for which the flavor-glue content is taken from the mixing calculations of other works. Since experimental data for these processes are poor, our results are compared with those of a recent non-relativistic model calculation. We find that while the relativistic corrections introduced by the LFQM reduce the magnitudes of the decay widths by 50-70%, the relative strengths between different decay processes are fairly well preserved. We also calculate decay widths for the processes ϕ(0++)γ\phi\to(0^{++})\gamma and (0^{++})\to\gamma\gamm involving the light scalars f0(980)f_0(980) and a0(980)a_0(980) to test the simple qqˉq\bar{q} model of these mesons. Our results of qqˉq\bar{q} model for these processes are not quite consistent with well-established data, further supporting the idea that f0(980)f_0(980) and a0(980)a_0(980) are not conventional qqˉq\bar{q} states.Comment: 10 pages, 4 figure

    Perturbative QCD and factorization of coherent pion photoproduction on the deuteron

    Full text link
    We analyze the predictions of perturbative QCD for pion photoproduction on the deuteron, gamma D -> pi^0 D, at large momentum transfer using the reduced amplitude formalism. The cluster decomposition of the deuteron wave function at small binding only allows the nuclear coherent process to proceed if each nucleon absorbs an equal fraction of the overall momentum transfer. Furthermore, each nucleon must scatter while remaining close to its mass shell. Thus the nuclear photoproduction amplitude, M_{gamma D -> pi^0 D}(u,t), factorizes as a product of three factors: (1) the nucleon photoproduction amplitude, M_{gamma N_1 -> pi^0 N_1}(u/4,t/4), at half of the overall momentum transfer, (2) a nucleon form factor, F_{N_2}(t/4), at half the overall momentum transfer, and (3) the reduced deuteron form factor, f_d(t), which according to perturbative QCD, has the same monopole falloff as a meson form factor. A comparison with the recent JLAB data for gamma D -> pi^0 D of Meekins et al. [Phys. Rev. C 60, 052201 (1999)] and the available gamma p -> pi^0 p data shows good agreement between the perturbative QCD prediction and experiment over a large range of momentum transfers and center of mass angles. The reduced amplitude prediction is consistent with the constituent counting rule, p^11_T M_{gamma D -> pi^0 D} -> F(theta_cm), at large momentum transfer. This is found to be consistent with measurements for photon lab energies E_gamma > 3 GeV at theta_cm=90 degrees and \elab > 10 GeV at 136 degrees.Comment: RevTeX 3.1, 17 pages, 6 figures; v2: incorporates minor changes as version accepted by Phys Rev

    Lattice methods and the nuclear few- and many-body problem

    Full text link
    We begin with a brief overview of lattice calculations using chiral effective field theory and some recent applications. We then describe several methods for computing scattering on the lattice. After that we focus on the main goal, explaining the theory and algorithms relevant to lattice simulations of nuclear few- and many-body systems. We discuss the exact equivalence of four different lattice formalisms, the Grassmann path integral, transfer matrix operator, Grassmann path integral with auxiliary fields, and transfer matrix operator with auxiliary fields. Along with our analysis we include several coding examples and a number of exercises for the calculations of few- and many-body systems at leading order in chiral effective field theory.Comment: 20 pages, 3 figures, Submitted to Lect. Notes Phys., "An advanced course in computational nuclear physics: Bridging the scales from quarks to neutron stars", M. Hjorth-Jensen, M. P. Lombardo, U. van Kolck, Editor

    Non-Abelian dynamics and heavy multiquarks, Steiner-tree confinement in hadron spectroscopy

    Full text link
    A brief review is first presented of attempts to predict stable multiquark states within current models of hadron spectroscopy. Then a model combining flip-flop and connected Steiner trees is introduced and shown to lead to stable multiquarks, in particular for some configurations involving several heavy quarks and bearing exotic quantum numbers.Comment: 8 pages, 5 figures, Invited talk at the 21st European Conference on Few-Body Problems in Physics, Salamanca, Spain, August 29th--September 3rd, 2010, to appear in the Proceedings, ed.~A.~Valcarce et al., to appear in Few-Body Syste

    Pentaquark as Kaon-Nucleon Resonance

    Full text link
    Several recent experiments have reported evidence for a narrow feature in the K(+)-neutron system, an apparent resonant state ~ 100 MeV above threshold and with a width < 25 MeV. This state has been labelled as Theta(+) (previously as Z(*)), and because of the implied inclusion of a anti-strange quark, is referred to as a pentaquark, that is, five quarks within a single bag. We present an alternative explanation for such a structure, as a higher angular momentum resonance in the isospin zero K(+) -N system. One might call this an exit channel or a molecular resonance. In a non-relativistic potential model we find a possible candidate for the kaon-nucleon system with relative angular momentum L=3, while L=1 and 2 states possess centrifugal barriers too low to confine the kaon and nucleon in a narrow state at an energy so high above threshold. A rather strong state-dependence in the potential is essential, however, for eliminating an observable L=2 resonance at lower energies.Comment: 4 page
    corecore