496 research outputs found

    Adaptations in the Temporalis Muscles of Rabbits after Masseter Muscle Removal

    Full text link
    Masseter muscles were surgically removed in six young female rabbits so that we could study adaptations of the superficial temporalis muscles (ST) to increased functional requirements. Eight weeks following surgery, we used morphological measurements, histochemistry, contractile properties in situ, and occlusal force in vivo to compare the muscles in the experimental animals and six control rabbits. Analysis of the results demonstrated a decrease in fatigability of ST after masseter myectomy. Incisal occlusal force decreased by 65% during the first two weeks, and no recovery was observed during the following six weeks. At eight weeks post-surgery, the mass, twitch tensions, and tetanic tensions of ST were not significantly different from those of the controls. An increase in the percent of the cross-sectional area composed of fast fatigue-resistant fibers, a slower time-to-peak twitch tension, and a decrease in fatigability suggest an increase in oxidative metabolism. Analysis of these results suggests that muscles used for highly repetitious activities with submaximal loadings adapt to increased functional requirements by increasing fatigue-resistant properties.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68261/2/10.1177_00220345860650110201.pd

    Pairing of fermions in atomic traps and nuclei

    Full text link
    Pairing gaps for fermionic atoms in harmonic oscillator traps are calculated for a wide range of interaction strengths and particle number, and compared to pairing in nuclei. Especially systems, where the pairing gap exceeds the level spacing but is smaller than the shell splitting ω\hbar\omega, are studied which applies to most trapped Fermi atomic systems as well as to finite nuclei. When solving the gap equation for a large trap with such multi-level pairing, one finds that the matrix elements between nearby harmonic oscillator levels and the quasi-particle energies lead to a double logarithm of the gap, and a pronounced shell structure at magic numbers. It is argued that neutron and proton pairing in nuclei belongs to the class of multi-level pairing, that their shell structure follows naturally and that the gaps scale as A1/3\sim A^{-1/3} - all in qualitative agreement with odd-even staggering of nuclear binding energies. Pairing in large systems are related to that in the bulk limit. For large nuclei the neutron and proton superfluid gaps approach the asymptotic value in infinite nuclear matter: Δ1.1\Delta\simeq 1.1 MeV.Comment: 11 pages, 5 figure

    Muon anomalous magnetic moment in the standard model with two Higgs doublets

    Get PDF
    The muon anomalous magnetic moment is investigated in the standard model with two Higgs doublets (S2HDM) motivated from spontaneous CP violation. Thus all the effective Yukawa couplings become complex. As a consequence of the non-zero phase in the couplings, the one loop contribution from the neutral scalar bosons could be positive and negative relying on the CP phases. The interference between one and two loop diagrams can be constructive in a large parameter space of CP-phases. This will result in a significant contribution to muon anomalous magnetic moment even in the flavor conserving process with a heavy neutral scalar boson (mhm_h \sim 200 GeV) once the effective muon Yukawa coupling is large (ξμ50|\xi_\mu|\sim 50). In general, the one loop contributions from lepton flavor changing scalar interactions become more important. In particular, when all contributions are positive in a reasonable parameter space of CP phases, the recently reported 2.6 sigma experiment vs. theory deviation can be easily explained even for a heavy scalar boson with a relative small Yukawa coupling in the S2HDM.Comment: 8 pages, RevTex file, 5 figures, published version Phys. Rev. D 54 (2001) 11501

    Electronic Collective Modes and Superconductivity in Layered Conductors

    Full text link
    A distinctive feature of layered conductors is the presence of low-energy electronic collective modes of the conduction electrons. This affects the dynamic screening properties of the Coulomb interaction in a layered material. We study the consequences of the existence of these collective modes for superconductivity. General equations for the superconducting order parameter are derived within the strong-coupling phonon-plasmon scheme that account for the screened Coulomb interaction. Specifically, we calculate the superconducting critical temperature Tc taking into account the full temperature, frequency and wave-vector dependence of the dielectric function. We show that low-energy plasmons may contribute constructively to superconductivity. Three classes of layered superconductors are discussed within our model: metal-intercalated halide nitrides, layered organic materials and high-Tc oxides. In particular, we demonstrate that the plasmon contribution (electronic mechanism) is dominant in the first class of layered materials. The theory shows that the description of so-called ``quasi-two-dimensional superconductors'' cannot be reduced to a purely 2D model, as commonly assumed. While the transport properties are strongly anisotropic, it remains essential to take into account the screened interlayer Coulomb interaction to describe the superconducting state of layered materials.Comment: Final version (minor changes) 14 pages, 6 figure

    Single Top Production as a Window to Physics Beyond the Standard Model

    Get PDF
    Production of single top quarks at a high energy hadron collider is studied as a means to identify physics beyond the standard model related to the electroweak symmetry breaking. The sensitivity of the ss-channel WW^* mode, the tt-channel WW-gluon fusion mode, and the \tw mode to various possible forms of new physics is assessed, and it is found that the three modes are sensitive to different forms of new physics, indicating that they provide complimentary information about the properties of the top quark. Polarization observables are also considered, and found to provide potentially useful information about the structure of the interactions of top.Comment: References added and minor discussion improvements; results unchanged; Version to be published in PR

    Method to compute the stress-energy tensor for the massless spin 1/2 field in a general static spherically symmetric spacetime

    Get PDF
    A method for computing the stress-energy tensor for the quantized, massless, spin 1/2 field in a general static spherically symmetric spacetime is presented. The field can be in a zero temperature state or a non-zero temperature thermal state. An expression for the full renormalized stress-energy tensor is derived. It consists of a sum of two tensors both of which are conserved. One tensor is written in terms of the modes of the quantized field and has zero trace. In most cases it must be computed numerically. The other tensor does not explicitly depend on the modes and has a trace equal to the trace anomaly. It can be used as an analytic approximation for the stress-energy tensor and is equivalent to other approximations that have been made for the stress-energy tensor of the massless spin 1/2 field in static spherically symmetric spacetimes.Comment: 34 pages, no figure

    Spallation reactions. A successful interplay between modeling and applications

    Get PDF
    The spallation reactions are a type of nuclear reaction which occur in space by interaction of the cosmic rays with interstellar bodies. The first spallation reactions induced with an accelerator took place in 1947 at the Berkeley cyclotron (University of California) with 200 MeV deuterons and 400 MeV alpha beams. They highlighted the multiple emission of neutrons and charged particles and the production of a large number of residual nuclei far different from the target nuclei. The same year R. Serber describes the reaction in two steps: a first and fast one with high-energy particle emission leading to an excited remnant nucleus, and a second one, much slower, the de-excitation of the remnant. In 2010 IAEA organized a worskhop to present the results of the most widely used spallation codes within a benchmark of spallation models. If one of the goals was to understand the deficiencies, if any, in each code, one remarkable outcome points out the overall high-quality level of some models and so the great improvements achieved since Serber. Particle transport codes can then rely on such spallation models to treat the reactions between a light particle and an atomic nucleus with energies spanning from few tens of MeV up to some GeV. An overview of the spallation reactions modeling is presented in order to point out the incomparable contribution of models based on basic physics to numerous applications where such reactions occur. Validations or benchmarks, which are necessary steps in the improvement process, are also addressed, as well as the potential future domains of development. Spallation reactions modeling is a representative case of continuous studies aiming at understanding a reaction mechanism and which end up in a powerful tool.Comment: 59 pages, 54 figures, Revie
    corecore