23,704 research outputs found

    Pulse-width modulation multiplier Patent

    Get PDF
    Pulse duration modulation multiplier syste

    Electric arc device for heating gases Patent

    Get PDF
    Electric arc device for minimizing electrode ablation and heating gases to supersonic or hypersonic wind tunnel temperature

    Primer for the Transportable Applications Executive

    Get PDF
    The Transportable Applications Executive (TAE), an interactive multipurpose executive that provides commonly required functions for scientific analysis systems, is discussed. The concept of an executive is discussed and the various components of TAE are presented. These include on-line help information, the use of menus or commands to access analysis programs, and TAE command procedures

    Upgrading of NASA-Ames high-energy hypersonic facilities: A Study

    Get PDF
    This study reviews facility capabilities of NASA, Ames Research Center to simulate hypersonic flight with particular emphasis on arc heaters. Scaling laws are developed and compared with ARCFLO II calculations and with existing data. The calculations indicate that a 300 MW, 100 atmosphere arc heater is feasible. Recommendations for the arc heater, which will operate at voltages up to 50 kilovolts, and the associated elements needed for a test facility are included

    Quantum Monte Carlo calculations of excited states in A = 6--8 nuclei

    Full text link
    A variational Monte Carlo method is used to generate sets of orthogonal trial functions, Psi_T(J^pi,T), for given quantum numbers in various light p-shell nuclei. These Psi_T are then used as input to Green's function Monte Carlo calculations of first, second, and higher excited (J^pi,T) states. Realistic two- and three-nucleon interactions are used. We find that if the physical excited state is reasonably narrow, the GFMC energy converges to a stable result. With the combined Argonne v_18 two-nucleon and Illinois-2 three-nucleon interactions, the results for many second and higher states in A = 6--8 nuclei are close to the experimental values.Comment: Revised version with minor changes as accepted by Phys. Rev. C. 11 page

    Evaluating matrix elements relevant to some Lorenz violating operators

    Get PDF
    Carlson, Carone and Lebed have derived the Feynman rules for a consistent formulation of noncommutative QCD. The results they obtained were used to constrain the noncommutativity parameter in Lorentz violating noncommutative field theories. However, their constraint depended upon an estimate of the matrix element of the quark level operator (gamma.p - m) in a nucleon. In this paper we calculate the matrix element of (gamma.p - m), using a variety of confinement potential models. Our results are within an order of magnitude agreement with the estimate made by Carlson et al. The constraints placed on the noncommutativity parameter were very strong, and are still quite severe even if weakened by an order of magnitude.Comment: 4 pages, 3 figures, RevTex, minor change

    Scaling and Duality in Semi-exclusive Processes

    Full text link
    We discuss extending scaling and duality studies to semi-exclusive processes. We show that semi-exclusive hard pion photoproduction should exhibit scaling behavior in kinematic regions where the photon and pion both interact directly with the same quark. We show that such kinematic regions exist. We also show that the constancy with changing momentum transfer of the resonance peak/scaling curve ratio, familiar for many resonances in deep inelastic scattering, is also expected in the semi-exclusive case.Comment: 8 pages, 4 figures, submitted to Phys.Rev.

    Emittance growth in linear induction accelerators

    Full text link
    The Dual-Axis Radiographic Hydrotest (DARHT) facility uses bremsstrahlung radiation source spots produced by the focused electron beams from two linear induction accelerators (LIAs) to radiograph large hydrodynamic experiments driven by high explosives. Radiographic resolution is determined by the size of the source spot, and beam emittance is the ultimate limitation to spot size. On the DARHT Axis-II LIA we measure an emittance higher than predicted by theoretical simulations, and even though this axis produces sub-millimeter source spots, we are exploring ways to improve the emittance. Some of the possible causes for the discrepancy have been investigated using particle-in-cell (PIC) codes, although most of these are discounted based on beam measurements. The most likely source of emittance growth is a mismatch of the beam to the magnetic transport, which can cause beam halo.Comment: 20th Int. Conf. on High-Power Particle Beams, Washington, DC, May, 201
    corecore