1,069 research outputs found
What Are the Total Costs of Surgical Treatment for Uterine Fibroids?
Abstract Objective: To investigate the direct and indirect costs of uterine fibroid (UF) surgery. Methods: Data were obtained from the MarketScan Commercial Claims and Encounters databases for 1999–2004. Our sample included 22,860 women with insurance coverage who were treated surgically for UF and 14,214 women who were treated nonsurgically for UF. Medical care costs and missed workdays were divided into baseline (1 year prior to surgery) and postoperative (1 year after surgery) periods. For a subsample of women, we calculated average annual costs 3 years before and after their surgery. Results: Of patients electing surgery, 85.9% underwent hysterectomy, 7.6% myomectomy, 4.9% endometrial ablation, and 1.6% uterine artery embolization (UAE). Women undergoing UAE incurred the highest medical care costs in the operative year (20,634 adjusted for confounders), followed by hysterectomy (17,390 adjusted), myomectomy (18,674 adjusted), and endometrial ablation (13,019 adjusted). Women treated nonsurgically incurred costs of 8,257 adjusted during the year after they were diagnosed with UF. Three years after surgery, patients treated with hysterectomy had the lowest annual costs. Missed workdays in the year after surgery were high, resulting in significant losses to employers in the magnitude of 25,229, depending on treatment, values assigned to missed workdays, and whether the analyses adjusted for confounders. Conclusions: UF surgical treatment costs were high. Absenteeism and disability were important components of the cost burden of UF treatment for women, their employers, and the healthcare system.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/63391/1/jwh.2008.0456.pd
Recommended from our members
The Pandora multi-algorithm approach to automated pattern recognition of cosmic-ray muon and neutrino events in the MicroBooNE detector.
The development and operation of liquid-argon time-projection chambers for neutrino physics has created a need for new approaches to pattern recognition in order to fully exploit the imaging capabilities offered by this technology. Whereas the human brain can excel at identifying features in the recorded events, it is a significant challenge to develop an automated, algorithmic solution. The Pandora Software Development Kit provides functionality to aid the design and implementation of pattern-recognition algorithms. It promotes the use of a multi-algorithm approach to pattern recognition, in which individual algorithms each address a specific task in a particular topology. Many tens of algorithms then carefully build up a picture of the event and, together, provide a robust automated pattern-recognition solution. This paper describes details of the chain of over one hundred Pandora algorithms and tools used to reconstruct cosmic-ray muon and neutrino events in the MicroBooNE detector. Metrics that assess the current pattern-recognition performance are presented for simulated MicroBooNE events, using a selection of final-state event topologies
Convolutional Neural Networks Applied to Neutrino Events in a Liquid Argon Time Projection Chamber
We present several studies of convolutional neural networks applied to data
coming from the MicroBooNE detector, a liquid argon time projection chamber
(LArTPC). The algorithms studied include the classification of single particle
images, the localization of single particle and neutrino interactions in an
image, and the detection of a simulated neutrino event overlaid with cosmic ray
backgrounds taken from real detector data. These studies demonstrate the
potential of convolutional neural networks for particle identification or event
detection on simulated neutrino interactions. We also address technical issues
that arise when applying this technique to data from a large LArTPC at or near
ground level
Noise Characterization and Filtering in the MicroBooNE Liquid Argon TPC
The low-noise operation of readout electronics in a liquid argon time
projection chamber (LArTPC) is critical to properly extract the distribution of
ionization charge deposited on the wire planes of the TPC, especially for the
induction planes. This paper describes the characteristics and mitigation of
the observed noise in the MicroBooNE detector. The MicroBooNE's single-phase
LArTPC comprises two induction planes and one collection sense wire plane with
a total of 8256 wires. Current induced on each TPC wire is amplified and shaped
by custom low-power, low-noise ASICs immersed in the liquid argon. The
digitization of the signal waveform occurs outside the cryostat. Using data
from the first year of MicroBooNE operations, several excess noise sources in
the TPC were identified and mitigated. The residual equivalent noise charge
(ENC) after noise filtering varies with wire length and is found to be below
400 electrons for the longest wires (4.7 m). The response is consistent with
the cold electronics design expectations and is found to be stable with time
and uniform over the functioning channels. This noise level is significantly
lower than previous experiments utilizing warm front-end electronics.Comment: 36 pages, 20 figure
Determination of muon momentum in the MicroBooNE LArTPC using an improved model of multiple Coulomb scattering
We discuss a technique for measuring a charged particle's momentum by means
of multiple Coulomb scattering (MCS) in the MicroBooNE liquid argon time
projection chamber (LArTPC). This method does not require the full particle
ionization track to be contained inside of the detector volume as other track
momentum reconstruction methods do (range-based momentum reconstruction and
calorimetric momentum reconstruction). We motivate use of this technique,
describe a tuning of the underlying phenomenological formula, quantify its
performance on fully contained beam-neutrino-induced muon tracks both in
simulation and in data, and quantify its performance on exiting muon tracks in
simulation. Using simulation, we have shown that the standard Highland formula
should be re-tuned specifically for scattering in liquid argon, which
significantly improves the bias and resolution of the momentum measurement.
With the tuned formula, we find agreement between data and simulation for
contained tracks, with a small bias in the momentum reconstruction and with
resolutions that vary as a function of track length, improving from about 10%
for the shortest (one meter long) tracks to 5% for longer (several meter)
tracks. For simulated exiting muons with at least one meter of track contained,
we find a similarly small bias, and a resolution which is less than 15% for
muons with momentum below 2 GeV/c. Above 2 GeV/c, results are given as a first
estimate of the MCS momentum measurement capabilities of MicroBooNE for high
momentum exiting tracks
- …