26 research outputs found

    Allopregnanolone preclinical acute pharmacokinetic and pharmacodynamic studies to predict tolerability and efficacy for Alzheimer's disease.

    Get PDF
    To develop allopregnanolone as a therapeutic for Alzheimer's disease, we investigated multiple formulations and routes of administration in translationally relevant animal models of both sexes. Subcutaneous, topical (transdermal and intranasal), intramuscular, and intravenous allopregnanolone were bolus-administered. Pharmacokinetic analyses of intravenous allopregnanolone in rabbit and mouse indicated that peak plasma and brain levels (3-fold brain/plasma ratios) at 5min were sufficient to activate neuroregenerative responses at sub-sedative doses. Slow-release subcutaneous suspension of allopregnanolone displayed 5-fold brain/plasma ratio at Cmax at 30min. At therapeutic doses by either subcutaneous or intravenous routes, allopregnanolone mouse plasma levels ranged between 34-51ng/ml by 30min, comparable to published endogenous human level in the third trimester of pregnancy. Exposure to subcutaneous, topical, intramuscular, and intravenous allopregnanolone, at safe and tolerable doses, increased hippocampal markers of neurogenesis including BrdU and PCNA in young 3xTgAD and aged wildtype mice. Intravenous allopregnanolone transiently and robustly phosphorylated CREB within 5min and increased levels of neuronal differentiation transcription factor NeuroD within 4h. Neurogenic efficacy was achieved with allopregnanolone brain exposure of 300-500hr*ng/g. Formulations were tested to determine the no observable adverse effect level (NOAEL) and maximally tolerated doses (MTD) in male and female rats by sedation behavior time course. Sex differences were apparent, males exhibited ≥40% more sedation time compared to females. Allopregnanolone formulated in sulfobutyl-ether-beta-cyclodextrin at optimized complexation ratio maximized allopregnanolone delivery and neurogenic efficacy. To establish the NOAEL and MTD for Allo-induced sedation using a once-per-week intravenous regenerative treatment regimen: In female rats the NOAEL was 0.5mg/kg and MTD 2mg/kg. The predicted MTD in human female is 0.37mg/kg. In male rats the NOAEL and MTD were less than those determined for female. Outcomes of these PK/PD studies predict a safe and efficacious dose range for initial clinical trials of allopregnanolone for Alzheimer's disease. These findings have translational relevance to multiple neurodegenerative conditions

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    Assessing the risk of bias in randomized controlled trials in the field of dentistry indexed in the Lilacs (Literatura Latino-Americana e do Caribe em Ciências da Saúde) database

    Full text link

    Understanding neuronal connectivity through the post-transcriptional toolkit

    No full text
    Post-transcriptional regulatory mechanisms have emerged as a critical component underlying the diversification and spatiotemporal control of the proteome during the establishment of precise neuronal connectivity. These mechanisms have been shown to be important for virtually all stages of assembling a neural network, from neurite guidance, branching, and growth to synapse morphogenesis and function. From the moment a gene is transcribed, it undergoes a series of post-transcriptional regulatory modifications in the nucleus and cytoplasm until its final deployment as a functional protein. Initially, a message is subjected to extensive structural regulation through alternative splicing, which is capable of greatly expanding the protein repertoire by generating, in some cases, thousands of functionally distinct isoforms from a single gene locus. Then, RNA packaging into neuronal transport granules and recognition by RNA-binding proteins and/or microRNAs is capable of restricting protein synthesis to selective locations and under specific input conditions. This ability of the post-transcriptional apparatus to expand the informational content of a cell and control the deployment of proteins in both spatial and temporal dimensions is a feature well adapted for the extreme morphological properties of neural cells. In this review, we describe recent advances in understanding how post-transcriptional regulatory mechanisms refine the proteomic complexity required for the assembly of intricate and specific neural networks

    Neuroactive steroids for the treatment of status epilepticus

    No full text
    Benzodiazepines are the current first-line standard-of-care treatment for status epilepticus but fail to terminate seizures in about one third of cases. Synaptic GABAA receptors, which mediate phasic inhibition in central circuits, are the molecular target of benzodiazepines. As status epilepticus progresses, these receptors are internalized and become functionally inactivated, conferring benzodiazepine resistance, which is believed to be a major cause of treatment failure. GABAA receptor positive allosteric modulator neuroactive steroids, such as allopregnanolone, also potentiate synaptic GABAA receptors, but in addition they enhance extrasynaptic GABAA receptors that mediate tonic inhibition. Extrasynaptic GABAA receptors are not internalized, and desensitization of these receptors does not occur during continuous seizures in status epilepticus models. Here we review the broad-spectrum antiseizure activity of allopregnanolone in animal seizure models and the evidence for its activity in models of status epilepticus. We also demonstrate that allopregnanolone inhibits ongoing behavioral and electrographic seizures in a model of status epilepticus, even when there is benzodiazepine resistance. Parenteral allopregnanolone may provide an improved treatment for refractory status epilepticus

    Allopregnanolone preclinical acute pharmacokinetic and pharmacodynamic studies to predict tolerability and efficacy for Alzheimer's disease.

    No full text
    To develop allopregnanolone as a therapeutic for Alzheimer's disease, we investigated multiple formulations and routes of administration in translationally relevant animal models of both sexes. Subcutaneous, topical (transdermal and intranasal), intramuscular, and intravenous allopregnanolone were bolus-administered. Pharmacokinetic analyses of intravenous allopregnanolone in rabbit and mouse indicated that peak plasma and brain levels (3-fold brain/plasma ratios) at 5min were sufficient to activate neuroregenerative responses at sub-sedative doses. Slow-release subcutaneous suspension of allopregnanolone displayed 5-fold brain/plasma ratio at Cmax at 30min. At therapeutic doses by either subcutaneous or intravenous routes, allopregnanolone mouse plasma levels ranged between 34-51ng/ml by 30min, comparable to published endogenous human level in the third trimester of pregnancy. Exposure to subcutaneous, topical, intramuscular, and intravenous allopregnanolone, at safe and tolerable doses, increased hippocampal markers of neurogenesis including BrdU and PCNA in young 3xTgAD and aged wildtype mice. Intravenous allopregnanolone transiently and robustly phosphorylated CREB within 5min and increased levels of neuronal differentiation transcription factor NeuroD within 4h. Neurogenic efficacy was achieved with allopregnanolone brain exposure of 300-500hr*ng/g. Formulations were tested to determine the no observable adverse effect level (NOAEL) and maximally tolerated doses (MTD) in male and female rats by sedation behavior time course. Sex differences were apparent, males exhibited ≥40% more sedation time compared to females. Allopregnanolone formulated in sulfobutyl-ether-beta-cyclodextrin at optimized complexation ratio maximized allopregnanolone delivery and neurogenic efficacy. To establish the NOAEL and MTD for Allo-induced sedation using a once-per-week intravenous regenerative treatment regimen: In female rats the NOAEL was 0.5mg/kg and MTD 2mg/kg. The predicted MTD in human female is 0.37mg/kg. In male rats the NOAEL and MTD were less than those determined for female. Outcomes of these PK/PD studies predict a safe and efficacious dose range for initial clinical trials of allopregnanolone for Alzheimer's disease. These findings have translational relevance to multiple neurodegenerative conditions
    corecore