6 research outputs found

    Microwaves Devulcanization of SBR Containing Carbon Black

    Get PDF
    Polymer recycling has been the most suitable alternative for management of plastics waste that are responsible by serious environmental damages. However, the recycling of some polymer materials, such as vulcanized elastomers, is not a trivial process. The recycling of elastomers is a process more complex than the recycling of thermoplastic polymers because the elastomers cannot be remolded by simple heating after vulcanization. Methods for rubber devulcanization has been developed as an interesting alternative for recover flow properties of elastomers, allowing other molding cycle. The aim of this work was to evaluate the effect of the presence of carbon black on devulcanization of styrene-butadiene rubber (SBR) by microwaves and analyze properties of recycled material. The devulcanization by microwaves showed efficiency for rubber compositions with higher content of carbon black incorporated as well as the properties of recycled material showed satisfactory performance for reuse in other products. Microwaves devulcanization of SBR is an important alternative for reuse of rubber waste and decrease of the environmental problem generated with discard of these materials

    The use of atomic force microscopy as an important technique to analyze the dispersion of nanometric fillers and morphology in nanocomposites and polymer blends based on elastomers

    No full text
    AFM has been recognized as one of the most powerful tools for the analysis of surface morphologies because it creates three-dimensional images at angstrom and nano scale. This technique has been exhaustively used in the analyses of dispersion of nanometric components in nanocomposites and in polymer blends, because of the easiness of sample preparation and lower equipment maintenance costs compared to electron microscopy. In this review, contributions using AFM are described, with emphasis on the dispersion of nanofillers in polymeric matrices. It is aimed to show the importance of technical analysis for nanocomposites and polymer blends based on elastomers

    Blends of ground tire rubber devulcanized by microwaves/HDPE - Part A: influence of devulcanization process

    No full text
    <title>Abstract</title><p>The main objective of this work is the study of the influence of microwaves devulcanization of the elastomeric phase on dynamically revulcanized blends based on Ground Tire Rubber (GTR)/High Density Polyethylene (HDPE). The devulcanization of the GTR was performed in a system comprised of a conventional microwave oven adapted with a motorized stirring at a constant microwaves power and at various exposure times. The influence of the devulcanization process on the final properties of the blends was evaluated in terms of mechanical, viscoelastic, thermal and rheological properties. The morphology was also studied.</p

    Blends of ground tire rubber devulcanized by microwaves/HDPE - Part B: influence of clay addition

    No full text
    AbstractThe main objective of this work is to study the influence of clay addition on dynamically revulcanized blends of Ground Tire Rubber (GTR)/High Density Polyethylene (HDPE). GTR was previously devulcanized in a system comprised of a conventional microwave oven adapted with a motorized stirring, with a fixed microwave power and at various exposure times. The influence of clay addition on the final properties of the blends was evaluated in terms of mechanical, viscoelastic, thermal and rheological properties, with morphology being also analyzed. The results depict that the clay can modify the rheological behavior of the GTR phase, in addition to the thermal and mechanical properties of some blends
    corecore