12,453 research outputs found

    Quantum pump effect in one-dimensional systems of Dirac fermions

    Full text link
    We investigate the behavior of the directed current in one-dimensional systems of Dirac fermions driven by local periodic potentials in the forward as well in backscattering channels. We treat the problem with Keldysh non-equilibrium Green's function formalism. We present the exact solution for the case of an infinite wire and show that in this case the dc current vanishes identically. We also investigate a confined system consistent in an annular arrangement coupled to a particle reservoir. We present a perturbative treatment that allows for the analytical expressions of the dc current in the lowest order of the amplitudes of the potential. We also present results obtained from the exact numerical solution of the problem.Comment: 8 pages, 5 figure

    Effect of reheating on electroweak baryogenesis

    Get PDF
    The latent heat released during the expansion of bubbles in the electroweak phase transition reheats the plasma and causes the bubble growth to slow down. This decrease of the bubble wall velocity affects the result of electroweak baryogenesis. Since the efficiency of baryogenesis peaks for a wall velocity ∼10−2\sim 10^{-2}, the resulting baryon asymmetry can either be enhanced or suppressed, depending on the initial value of the wall velocity. We calculate the evolution of the phase transition taking into account the release of latent heat. We find that, although in the SM the baryon production is enhanced by this effect, in the MSSM it causes a suppression to the final baryon asymmetry.Comment: 4 pages, 3 figures. References added. Revised version to be published in Phys.Rev.

    Experimental Demonstration of a Structured Material with Extreme Effective Parameters at Microwaves

    Get PDF
    Following our recent theoretical studies [M. G. Silveirinha, C. A. Fernandes, Phys. Rev. B, 78, 033108, 2008], it is experimentally verified that an array of crossed metallic wires may behave as a nonresonant material with extremely large index of refraction at microwaves, and may enable the realization of ultra-subwavelength waveguides.Comment: accepted for publication in Applied Physics Letters (in press). Applied Physics Letters (in press) (2008

    Thermoelectric Figure of Merit of Strongly Correlated Superlattice Semiconductors

    Full text link
    We solved the Anderson Lattice Hamiltonian to get the energy bands of a strongly correlated semiconductor by using slave boson mean field theory. The transport properties were calculated in the relaxation-time approximation,and the thermoelectric figure of merit was obtained for the strongly correlated semiconductor and its superlattice structures. We found that at room temperature ZTZT can reach nearly 2 for the quantum wire lattice structure.We believe that it is possible to find high values of thermoelectric figure of merit from strongly correlated semiconductor superlattice systems.Comment: 4 pages, 3 figure

    Interpersonal violence in peacetime Malawi.

    Get PDF
    Background: The contribution of interpersonal violence (IPV) to trauma burden varies greatly by region. The high rates of IPV in sub-Saharan Africa are thought to relate in part to the high rates of collective violence. Malawi, a country with no history of internal collective violence, provides an excellent setting to evaluate whether collective violence drives the high rates of IPV in this region. Methods: This is a retrospective review of a prospective trauma registry from 2009 through 2016 at Kamuzu Central Hospital in Lilongwe, Malawi. Adult (\u3e16 years) victims of IPV were compared with non-intentional trauma victims. Log binomial regression determined factors associated with increased risk of mortality for victims of IPV. Results: Of 72 488 trauma patients, 25 008 (34.5%) suffered IPV. Victims of IPV were more often male (80.2% vs. 74.8%; p Discussion: Even in a sub-Saharan country that never experienced internal collective violence, IPV injury rates are high. Public health efforts to measure and address alcohol use, and studies to determine the role of mob justice, poverty, and intimate partner violence in IPV, in Malawi are needed. Level of evidence: Level III

    the SDSS-III APOGEE Spectral Line List for H-Band Spectroscopy

    Get PDF
    We present the H-band spectral line lists adopted by the Apache Point Observatory Galactic Evolution Experiment (APOGEE). The APOGEE line lists comprise astrophysical, theoretical, and laboratory sources from the literature, as well as newly evaluated astrophysical oscillator strengths and damping parameters. We discuss the construction of the APOGEE line list, which is one of the critical inputs for the APOGEE Stellar Parameters and Chemical Abundances Pipeline, and present three different versions that have been used at various stages of the project. The methodology for the newly calculated astrophysical line lists is reviewed. The largest of these three line lists contains 134,457 molecular and atomic transitions. In addition to the format adopted to store the data, the line lists are available in MOOG, Synspec, and Turbospectrum formats. The limitations of the line lists along with guidance for its use on different spectral types are discussed. We also present a list of H-band spectral features that are either poorly represented or completely missing in our line list. This list is based on the average of a large number of spectral fit residuals for APOGEE observations spanning a wide range of stellar parameters.Alfred P. Sloan FoundationNational Science FoundationU.S. Department of Energy Office of ScienceJanos Bolyai Research Scholarship of the Hungarian Academy of SciencesSpanish Ministry of Economy and Competitiveness AYA-2011-27754, AYA-2014-58082-PRSF 14-50-00043McDonald Observator

    The Lagrange and Markov spectra from the dynamical point of view

    Full text link
    This text grew out of my lecture notes for a 4-hours minicourse delivered on October 17 \& 19, 2016 during the research school "Applications of Ergodic Theory in Number Theory" -- an activity related to the Jean-Molet Chair project of Mariusz Lema\'nczyk and S\'ebastien Ferenczi -- realized at CIRM, Marseille, France. The subject of this text is the same of my minicourse, namely, the structure of the so-called Lagrange and Markov spectra (with an special emphasis on a recent theorem of C. G. Moreira).Comment: 27 pages, 6 figures. Survey articl

    Self-avoiding walks on scale-free networks

    Full text link
    Several kinds of walks on complex networks are currently used to analyze search and navigation in different systems. Many analytical and computational results are known for random walks on such networks. Self-avoiding walks (SAWs) are expected to be more suitable than unrestricted random walks to explore various kinds of real-life networks. Here we study long-range properties of random SAWs on scale-free networks, characterized by a degree distribution P(k)∼k−γP(k) \sim k^{-\gamma}. In the limit of large networks (system size N→∞N \to \infty), the average number sns_n of SAWs starting from a generic site increases as μn\mu^n, with μ=/−1\mu = / - 1. For finite NN, sns_n is reduced due to the presence of loops in the network, which causes the emergence of attrition of the paths. For kinetic growth walks, the average maximum length, , increases as a power of the system size: ∼Nα \sim N^{\alpha}, with an exponent α\alpha increasing as the parameter γ\gamma is raised. We discuss the dependence of α\alpha on the minimum allowed degree in the network. A similar power-law dependence is found for the mean self-intersection length of non-reversal random walks. Simulation results support our approximate analytical calculations.Comment: 9 pages, 7 figure
    • …
    corecore