361 research outputs found
Coexistence of excited states in confined Ising systems
Using the density-matrix renormalization-group method we study the
two-dimensional Ising model in strip geometry. This renormalization scheme
enables us to consider the system up to the size 300 x infinity and study the
influence of the bulk magnetic field on the system at full range of
temperature. We have found out the crossover in the behavior of the correlation
length on the line of coexistence of the excited states. A detailed study of
scaling of this line is performed. Our numerical results support and specify
previous conclusions by Abraham, Parry, and Upton based on the related bubble
model.Comment: 4 Pages RevTeX and 4 PostScript figures included; the paper has been
rewritten without including new result
Equilibrium shapes and faceting for ionic crystals of body-centered-cubic type
A mean field theory is developed for the calculation of the surface free
energy of the staggered BCSOS, (or six vertex) model as function of the surface
orientation and of temperature. The model approximately describes surfaces of
crystals with nearest neighbor attractions and next nearest neighbor
repulsions. The mean field free energy is calculated by expressing the model in
terms of interacting directed walks on a lattice. The resulting equilibrium
shape is very rich with facet boundaries and boundaries between reconstructed
and unreconstructed regions which can be either sharp (first order) or smooth
(continuous). In addition there are tricritical points where a smooth boundary
changes into a sharp one and triple points where three sharp boundaries meet.
Finally our numerical results strongly suggest the existence of conical points,
at which tangent planes of a finite range of orientations all intersect each
other. The thermal evolution of the equilibrium shape in this model shows
strong similarity to that seen experimentally for ionic crystals.Comment: 14 Pages, Revtex and 10 PostScript figures include
Fixed Point of the Finite System DMRG
The density matrix renormalization group (DMRG) is a numerical method that
optimizes a variational state expressed by a tensor product. We show that the
ground state is not fully optimized as far as we use the standard finite system
algorithm, that uses the block structure B**B. This is because the tensors are
not improved directly. We overcome this problem by using the simpler block
structure B*B for the final several sweeps in the finite iteration process. It
is possible to increase the numerical precision of the finite system algorithm
without increasing the computational effort.Comment: 6 pages, 4 figure
Effective affinities in microarray data
In the past couple of years several studies have shown that hybridization in
Affymetrix DNA microarrays can be rather well understood on the basis of simple
models of physical chemistry. In the majority of the cases a Langmuir isotherm
was used to fit experimental data. Although there is a general consensus about
this approach, some discrepancies between different studies are evident. For
instance, some authors have fitted the hybridization affinities from the
microarray fluorescent intensities, while others used affinities obtained from
melting experiments in solution. The former approach yields fitted affinities
that at first sight are only partially consistent with solution values. In this
paper we show that this discrepancy exists only superficially: a sufficiently
complete model provides effective affinities which are fully consistent with
those fitted to experimental data. This link provides new insight on the
relevant processes underlying the functioning of DNA microarrays.Comment: 8 pages, 6 figure
Universality in the pair contact process with diffusion
The pair contact process with diffusion is studied by means of multispin
Monte Carlo simulations and density matrix renormalization group calculations.
Effective critical exponents are found to behave nonmonotonically as functions
of time or of system length and extrapolate asymptotically towards values
consistent with the directed percolation universality class. We argue that an
intermediate regime exists where the effective critical dynamics resembles that
of a parity conserving process.Comment: 8 Pages, 9 figures, final version as publishe
Elastic Lattice Polymers
We study a model of "elastic" lattice polymer in which a fixed number of
monomers is hosted by a self-avoiding walk with fluctuating length . We
show that the stored length density scales asymptotically
for large as , where is the
polymer entropic exponent, so that can be determined from the analysis
of . We perform simulations for elastic lattice polymer loops with
various sizes and knots, in which we measure . The resulting estimates
support the hypothesis that the exponent is determined only by the
number of prime knots and not by their type. However, if knots are present, we
observe strong corrections to scaling, which help to understand how an entropic
competition between knots is affected by the finite length of the chain.Comment: 10 page
Transfer-matrix DMRG for stochastic models: The Domany-Kinzel cellular automaton
We apply the transfer-matrix DMRG (TMRG) to a stochastic model, the
Domany-Kinzel cellular automaton, which exhibits a non-equilibrium phase
transition in the directed percolation universality class. Estimates for the
stochastic time evolution, phase boundaries and critical exponents can be
obtained with high precision. This is possible using only modest numerical
effort since the thermodynamic limit can be taken analytically in our approach.
We also point out further advantages of the TMRG over other numerical
approaches, such as classical DMRG or Monte-Carlo simulations.Comment: 9 pages, 9 figures, uses IOP styl
Boundary and Bulk Phase Transitions in the Two Dimensional Q > 4 State Potts Model
The surface and bulk properties of the two-dimensional Q > 4 state Potts
model in the vicinity of the first order bulk transition point have been
studied by exact calculations and by density matrix renormalization group
techniques. For the surface transition the complete analytical solution of the
problem is presented in the limit, including the critical and
tricritical exponents, magnetization profiles and scaling functions. According
to the accurate numerical results the universality class of the surface
transition is independent of the value of Q > 4. For the bulk transition we
have numerically calculated the latent heat and the magnetization discontinuity
and we have shown that the correlation lengths in the ordered and in the
disordered phases are identical at the transition point.Comment: 11 pages, RevTeX, 6 PostScript figures included. Manuscript
substantially extended, details on the analytical and numerical calculations
added. To appear in Phys. Rev.
Stability domains of actin genes and genomic evolution
In eukaryotic genes the protein coding sequence is split into several
fragments, the exons, separated by non-coding DNA stretches, the introns.
Prokaryotes do not have introns in their genome. We report the calculations of
stability domains of actin genes for various organisms in the animal, plant and
fungi kingdoms. Actin genes have been chosen because they have been highly
conserved during evolution. In these genes all introns were removed so as to
mimic ancient genes at the time of the early eukaryotic development, i.e.
before introns insertion. Common stability boundaries are found in evolutionary
distant organisms, which implies that these boundaries date from the early
origin of eukaryotes. In general boundaries correspond with introns positions
of vertebrates and other animals actins, but not much for plants and fungi. The
sharpest boundary is found in a locus where fungi, algae and animals have
introns in positions separated by one nucleotide only, which identifies a
hot-spot for insertion. These results suggest that some introns may have been
incorporated into the genomes through a thermodynamic driven mechanism, in
agreement with previous observations on human genes. They also suggest a
different mechanism for introns insertion in plants and animals.Comment: 9 Pages, 7 figures. Phys. Rev. E in pres
- …