35 research outputs found

    Intrinsic acyl-CoA thioesterase activity of a peroxisomal ATP binding cassette transporter is required for transport and metabolism of fatty acids.

    Get PDF
    Peroxisomes are organelles that perform diverse metabolic functions in different organisms, but a common function is β-oxidation of a variety of long chain aliphatic, branched, and aromatic carboxylic acids. Import of substrates into peroxisomes for β-oxidation is mediated by ATP binding cassette (ABC) transporter proteins of subfamily D, which includes the human adrenoleukodystropy protein (ALDP) defective in X-linked adrenoleukodystrophy (X-ALD). Whether substrates are transported as CoA esters or free acids has been a matter of debate. Using COMATOSE (CTS), a plant representative of the ABCD family, we demonstrate that there is a functional and physical interaction between the ABC transporter and the peroxisomal long chain acyl-CoA synthetases (LACS)6 and -7. We expressed recombinant CTS in insect cells and showed that membranes from infected cells possess fatty acyl-CoA thioesterase activity, which is stimulated by ATP. A mutant, in which Serine 810 is replaced by asparagine (S810N) is defective in fatty acid degradation in vivo, retains ATPase activity but has strongly reduced thioesterase activity, providing strong evidence for the biological relevance of this activity. Thus, CTS, and most likely the other ABCD family members, represent rare examples of polytopic membrane proteins with an intrinsic additional enzymatic function that may regulate the entry of substrates into the β-oxidation pathway. The cleavage of CoA raises questions about the side of the membrane where this occurs and this is discussed in the context of the peroxisomal coenzyme A (CoA) budget

    Identification of the peroxisomal beta-oxidation enzymes involved in the degradation of long-chain dicarboxylic acids

    No full text
    Dicarboxylic acids (DCAs) are omega-oxidation products of monocarboxylic acids. After activation by a dicarboxylyl-CoA synthetase, the dicarboxylyl-CoA esters are shortened via beta-oxidation. Although it has been studied extensively where this beta-oxidation process takes place, the intracellular site of DCA oxidation has remained controversial. Making use of fibroblasts from patients with defined mitochondrial and peroxisomal fatty acid oxidation defects, we show in this paper that peroxisomes, and not mitochondria, are involved in the beta-oxidation of C16DCA. Additional studies in fibroblasts from patients with X-linked adrenoleukodystrophy, straight-chain acyl-CoA oxidase (SCOX) deficiency, d-bifunctional protein (DBP) deficiency, and rhizomelic chondrodysplasia punctata type 1, together with direct enzyme measurements with human recombinant l-bifunctional protein (LBP) and DBP expressed in a fox2 deletion mutant of Saccharomyces cerevisiae, show that the main enzymes involved in beta-oxidation of C16DCA are SCOX, both LBP and DBP, and sterol carrier protein X, possibly together with the classic 3-ketoacyl-CoA thiolase. This is the first indication of a specific function for LBP, which has remained elusive until no

    Peroxisomal ATP Uptake Is Provided by Two Adenine Nucleotide Transporters and the ABCD Transporters

    No full text
    Peroxisomes are essential organelles involved in various metabolic processes, including fatty acid β-oxidation. Their metabolic functions require a controlled exchange of metabolites and co-factors, including ATP, across the peroxisomal membrane. We investigated which proteins are involved in the peroxisomal uptake of ATP in the yeast Saccharomyces cerevisiae. Using wild-type and targeted deletion strains, we measured ATP-dependent peroxisomal octanoate β-oxidation, intra-peroxisomal ATP levels employing peroxisome-targeted ATP-sensing reporter proteins, and ATP uptake in proteoliposomes prepared from purified peroxisomes. We show that intra-peroxisomal ATP levels are maintained by different peroxisomal membrane proteins each with different modes of action: 1) the previously reported Ant1p protein, which catalyzes the exchange of ATP for AMP or ADP, 2) the ABC transporter protein complex Pxa1p/Pxa2p, which mediates both uni-directional acyl-CoA and ATP uptake, and 3) the mitochondrial Aac2p protein, which catalyzes ATP/ADP exchange and has a dual localization in both mitochondria and peroxisomes. Our results provide compelling evidence for a complementary system for the uptake of ATP in peroxisomes

    Peroxisomal Metabolite and Cofactor Transport in Humans

    No full text
    Peroxisomes are membrane-bound organelles involved in many metabolic pathways and essential for human health. They harbor a large number of enzymes involved in the different pathways, thus requiring transport of substrates, products and cofactors involved across the peroxisomal membrane. Although much progress has been made in understanding the permeability properties of peroxisomes, there are still important gaps in our knowledge about the peroxisomal transport of metabolites and cofactors. In this review, we discuss the different modes of transport of metabolites and essential cofactors, including CoA, NAD+, NADP+, FAD, FMN, ATP, heme, pyridoxal phosphate, and thiamine pyrophosphate across the peroxisomal membrane. This transport can be mediated by non-selective pore-forming proteins, selective transport proteins, membrane contact sites between organelles, and co-import of cofactors with proteins. We also discuss modes of transport mediated by shuttle systems described for NAD+/NADH and NADP+/NADPH. We mainly focus on current knowledge on human peroxisomal metabolite and cofactor transport, but also include knowledge from studies in plants, yeast, fruit fly, zebrafish, and mice, which has been exemplary in understanding peroxisomal transport mechanisms in general

    A role for the human peroxisomal half-transporter ABCD3 in the oxidation of dicarboxylic acids

    No full text
    Peroxisomes play a major role in human cellular lipid metabolism, including fatty acid β-oxidation. Free fatty acids (FFAs) can enter peroxisomes through passive diffusion or by means of ATP binding cassette (ABC) transporters, including HsABCD1 (ALDP, adrenoleukodystrophy protein), HsABCD2 (ALDRP) and HsABCD3 (PMP70). The physiological functions of the different peroxisomal half-ABCD transporters have not been fully determined yet, but there are clear indications that both HsABCD1 and HsABCD2 are required for the breakdown of fatty acids in peroxisomes. Here we report that the phenotype of the pxa1/pxa2Δ yeast mutant, i.e. impaired oxidation of oleic acid, cannot only be partially rescued by HsABCD1, HsABCD2, but also by HsABCD3, which indicates that each peroxisomal half-transporter can function as homodimer. Fatty acid oxidation measurements using various fatty acids revealed that although the substrate specificities of HsABCD1, HsABCD2 and HsABCD3 are overlapping, they have distinctive preferences. Indeed, most hydrophobic C24:0 and C26:0 fatty acids are preferentially transported by HsABCD1, C22:0 and C22:6 by HsABCD2 and most hydrophilic substrates like long-chain unsaturated-, long branched-chain- and long-chain dicarboxylic fatty acids by HsABCD3. All these fatty acids are most likely transported as CoA esters. We postulate a role for human ABCD3 in the oxidation of dicarboxylic acids and a role in buffering fatty acids that are overflowing from the mitochondrial β-oxidation syste

    Differential substrate specificities of human ABCD1 and ABCD2 in peroxisomal fatty acid β-oxidation

    No full text
    The gene mutated in X-linked adrenoleukodystrophy (X-ALD) codes for the HsABCD1 protein, also named ALDP, which is a member of the superfamily of ATP-binding cassette (ABC) transporters and required for fatty acid transport across the peroxisomal membrane. Although a defective HsABCD1 results in the accumulation of very long-chain fatty acids in plasma of X-ALD patients, there is still no direct biochemical evidence that HsABCD1 actually transports very long-chain fatty acids. We used the yeast Saccharomyces cerevisiae to study the transport of fatty acids across the peroxisomal membrane. Our earlier work showed that in yeast the uptake of fatty acids into peroxisomes may occur via two routes, either as (1.) free fatty acid or as (2.) acyl-CoA ester. The latter route involves the two peroxisomal half-ABC transporters, Pxa1p and Pxa2p, which form a heterodimeric complex in the peroxisomal membrane. We here report that the phenotype of the pxa1/pxa2Δ yeast mutant, i.e. impaired growth on oleate containing medium and deficient oxidation of oleic acid, cannot only be partially rescued by human ABCD1, but also by human ABCD2 (ALDRP), which indicates that HsABCD1 and HsABCD2 can both function as homodimers. Fatty acid oxidation studies in the pxa1/pxa2Δ mutant transformed with either HsABCD1 or HsABCD2 revealed clear differences suggesting that HsABCD1 and HsABCD2 have distinct substrate specificities. Indeed, full rescue of beta-oxidation activity in cells expressing human ABCD2 was observed with C22:0 and different unsaturated very long-chain fatty acids including C24:6 and especially C22:6 whereas in cells expressing HsABCD1 rescue of beta-oxidation activity was best with C24:0 and C26:0 as substrate

    dif-1 and colt, both implicated in early embryonic development, encode carnitine acylcarnitine translocase

    No full text
    It has always been assumed that during development the embryo and fetus depend only on glycolysis for energy generation and that they do not oxidize fatty acids. Recently, however, we found abundant expression and activity of fatty acid oxidation (FAO) enzymes in the human embryo and fetus. In a search for FAO gene expression during development we came across two embryonic differentiation genes: differentiation defective (dif-1) and congested-like trachea (colt) of Caenorhabditis elegans and Drosophila melanogaster, respectively. Earlier studies showed that expression of these two genes is essential during developmental stages with high energy requirements. Both dif-1 and colt encode proteins with sequence similarity to the mitochondrial carnitine acylcarnitine carrier (CACT), which suggests that the DIF-1 and COLT proteins might be functional orthologues of CACT. To investigate this, we expressed both dif-1 and colt in Saccharomyces cerevisiae. Our results show that DIF-1 and COLT can functionally complement a yeast CACT deletion strain and thus function as carnitine acylcarnitine transporters. This finding is well in line with the recent observation that embryos are capable of oxidizing fatty acids and furthermore implies that FAO is essential during early embryonic development when the energy demand is hig

    The peroxisomal ABC transporter family

    No full text
    This review describes the current state of knowledge about the ABCD family of peroxisomal half adenosine-triphosphate-binding cassette (ABC) transporters. ABCDs are predicted to be present in a variety of eukaryotic organisms, although at present, only ABCDs in the yeast Saccharomyces cerevisiae, the plant Arabidopsis thaliana, and different mammalian species have been identified and characterized to any significant extent. The functional role of none of these ABCDs has been established definitively and awaits successful reconstitution of ABCDs, either as homo- or heterodimers into liposomes, followed by transport studies. Data obtained in S. cerevisiae suggest that the two ABCDs, which have been identified in this organism, form a heterodimer, which actually transports acyl coenzyme A esters across the peroxisomal membrane. In mammals, four ABCDs have been identified, of which one [adrenoleukodystrophy protein (ALDP)] has been implicated in the transport of the coenzyme A esters of very-long-chain fatty acids. Mutations in the gene (ABCD1) encoding ALDP are the cause of a severe X-linked disease, called X-linked adrenoleukodystrophy. The availability of mutant mice in which Abcd1, Abcd2, or Abcd3 have been disrupted will help to resolve the true role of the peroxisomal half-ABC transporter
    corecore