2 research outputs found
Enhanced Emission from WSe2 Monolayers Coupled to Circular Bragg Gratings
Two-dimensional transition-metal dichalcogenides (TMDC) are of great interest
for on-chip nanophotonics due to their unique optoelectronic properties. Here,
we propose and realize coupling of tungsten diselenide (WSe2) monolayers to
circular Bragg grating structures to achieve enhanced emission. The interaction
between WSe2 and the resonant mode of the structure results in Purcell-enhanced
emission, while the symmetric geometrical structure improves the directionality
of the out-coupling stream of emitted photons. Furthermore, this hybrid
structure produces a record high contrast of the spin valley readout (> 40%)
revealed by the polarization resolved photoluminescence (PL) measurements. Our
results are promising for on-chip integration of TMDC monolayers with optical
resonators for nanophotonic circuits
Emission and Nonradiative Decay of Nanodiamond NV Centers in a Low Refractive Index Environment
The nitrogen vacancy (NV) center is the most widely studied single optical defect in diamond with great potential for applications in quantum technologies. Development of practical single-photon devices requires an understanding of the emission under a range of conditions and environments. In this work, we study the properties of a single NV center in nanodiamonds embedded in an air-like silica aerogel environment which provides a new domain for probing the emission behavior of NV centers in nanoscale environments. In this arrangement, the emission rate is governed primarily by the diamond crystal lattice with negligible contribution from the surrounding environment. This is in contrast to the conventional approach of studying nanodiamonds on a glass coverslip. We observe an increase in the mean lifetime due to the absence of a dielectric interface near the emitting dipoles and a distribution arising from the irregularities in the nanodiamond geometry. Our approach results in the estimation of the mean quantum efficiency (∼0.7) of the nanodiamond NV emitters