17 research outputs found

    Tobacco Upregulates P. gingivalis Fimbrial Proteins Which Induce TLR2 Hyposensitivity

    Get PDF
    Tobacco smokers are more susceptible to periodontitis than non-smokers but exhibit reduced signs of clinical inflammation. The underlying mechanisms are unknown. We have previously shown that cigarette smoke extract (CSE) represents an environmental stress to which P. gingivalis adapts by altering the expression of several virulence factors - including major and minor fimbrial antigens (FimA and Mfa1, respectively) and capsule - concomitant with a reduced pro-inflammatory potential of intact P. gingivalis.We hypothesized that CSE-regulation of capsule and fimbrial genes is reflected at the ultrastructural and functional levels, alters the nature of host-pathogen interactions, and contributes to the reduced pro- inflammatory potential of smoke exposed P. gingivalis. CSE induced ultrastructural alterations were determined by electron microscopy, confirmed by Western blot and physiological consequences studied in open-flow biofilms. Inflammatory profiling of specific CSE-dysregulated proteins, rFimA and rMfa1, was determined by quantifying cytokine induction in primary human innate and OBA-9 cells. CSE up-regulates P. gingivalis FimA at the protein level, suppresses the production of capsular polysaccharides at the ultrastructural level, and creates conditions that promote biofilm formation. We further show that while FimA is recognized by TLR2/6, it has only minimal inflammatory activity in several cell types. Furthermore, FimA stimulation chronically abrogates the pro-inflammatory response to subsequent TLR2 stimulation by other TLR-2-specific agonists (Pam3CSK4, FSL, Mfa1) in an IkappaBalpha- and IRAK-1-dependent manner.These studies provide some of the first information to explain, mechanistically, how tobacco smoke changes the P. gingivalis phenotype in a manner likely to promote P. gingivalis colonization and infection while simultaneously reducing the host response to this major mucosal pathogen

    Interaction of Porphyromonas gingivalis with Oral Streptococci Requires a Motif That Resembles the Eukaryotic Nuclear Receptor Box Protein-Protein Interaction Domain▿

    No full text
    Porphyromonas gingivalis initially colonizes the oral cavity by interacting with organisms in supragingival plaque, such as the oralis group of oral streptococci. This interaction involves the association of the streptococcal antigen I/II with the minor fimbrial antigen (Mfa1) of P. gingivalis. Our previous studies showed that a peptide (BAR) derived from antigen I/II inhibits P. gingivalis adherence and subsequent biofilm formation on streptococcal substrates. In addition, screening a combinatorial peptide library identified select amino acid substitutions in the NITVK active region of BAR that increased the adherence of P. gingivalis to streptococci. Here we report that incorporating these residues in a synthetic peptide results in more-potent inhibition of P. gingivalis adherence and biofilm formation (I50 [50% inhibition] at 0.52 μM versus I50 at 1.25 μM for BAR). In addition, a second structural motif in BAR, comprised of the amino acids KKVQDLLKK, was shown to contribute to P. gingivalis adherence to streptococci. Consistent with this, the KKVQDLLKK and NITVK motifs are conserved only in antigen I/II proteins expressed by the oralis group of streptococci, which interact with P. gingivalis. Interestingly, the primary and secondary structures and the functional characteristics of the amphipathic VQDLL core α-helix resemble the consensus nuclear receptor (NR) box protein-protein interacting domain sequence (LXXLL) of eukaryotes. BAR peptides containing amino acid substitutions with the potential to disrupt the secondary structure of VQDLL were less-effective inhibitors of P. gingivalis adherence and biofilm formation, suggesting that the α-helical character of VQDLL is important. Furthermore, replacing the lysines that flank VQDLL with acidic amino acids also reduced inhibitory activity, suggesting that the association of VQDLL with Mfa1 may be stabilized by a charge clamp. These results indicate that the Mfa1-interacting interface of streptococcal antigen I/II encompasses both the KKVQDLLKK and NITVK motif and suggest that the adherence of P. gingivalis to streptococci is driven by a protein-protein interaction domain that resembles the eukaryotic NR box. Thus, both motifs must be taken into account in designing potential peptidomimetics that target P. gingivalis adherence and biofilm formation

    Autoinducer-2 and QseC Control Biofilm Formation and In Vivo Virulence of Aggregatibacter actinomycetemcomitans▿

    No full text
    Biofilm formation by the periodontal pathogen Aggregatibacter actinomycetemcomitans is dependent upon autoinducer-2 (AI-2)-mediated quorum sensing. However, the components that link the detection of the AI-2 signal to downstream gene expression have not been determined. One potential regulator is the QseBC two-component system, which is part of the AI-2-dependent response pathway that controls biofilm formation in Escherichia coli. Here we show that the expression of QseBC in A. actinomycetemcomitans is induced by AI-2 and that induction requires the AI-2 receptors, LsrB and/or RbsB. Additionally, inactivation of qseC resulted in reduced biofilm growth. Since the ability to grow in biofilms is essential for A. actinomycetemcomitans virulence, strains that were deficient in QseC or the AI-2 receptors were examined in an in vivo mouse model of periodontitis. The ΔqseC mutant induced significantly less alveolar bone resorption than the wild-type strain (P < 0.02). Bone loss in animals infected with the ΔqseC strain was similar to that in sham-infected animals. The ΔlsrB, ΔrbsB, and ΔlsrB ΔrbsB strains also induced significantly less alveolar bone resorption than the wild type (P < 0.03, P < 0.02, and P < 0.01, respectively). However, bone loss induced by a ΔluxS strain was indistinguishable from that induced by the wild type, suggesting that AI-2 produced by indigenous microflora in the murine oral cavity may complement the ΔluxS mutation. Together, these results suggest that the QseBC two-component system is part of the AI-2 regulon and may link the detection of AI-2 to the regulation of downstream cellular processes that are involved in biofilm formation and virulence of A. actinomycetemcomitans

    Structural Characterization of Peptide-Mediated Inhibition of Porphyromonas gingivalis Biofilm Formation

    No full text
    Porphyromonas gingivalis is a periodontal pathogen whose primary niche is the anaerobic environment of subgingival dental plaque, but initial colonization of the oral cavity is likely to occur on supragingival surfaces that already support robust biofilm communities. Our studies have shown that P. gingivalis adheres to Streptococcus gordonii through interaction of the minor fimbrial antigen Mfa1 with a specific region of the streptococcal SspB polypeptide (residues 1167 to 1193) designated BAR. We show that a synthetic peptide comprising the BAR sequence potently inhibits P. gingivalis adherence to S. gordonii (50% inhibitory concentration = 1.3 μM) and prevents the development of P. gingivalis biofilms. However, a retroinverso peptide that possessed the same side chain topology as that of BAR was inactive, suggesting that interactions of Mfa1 with the peptide backbone of BAR are important for binding. A conformationally constrained analog of BAR inhibited P. gingivalis adherence and biofilm formation but at a lower specific activity than that of BAR. Therefore, to further define the structural features of the Mfa1-BAR interaction, we functionally screened combinatorial libraries of BAR in which active site residues (Asn(1182), Thr(1184), and Val(1185)) were replaced with each of the 19 common amino acids. Peptides containing positively charged amino acids at position 1182 or hydrophobic residues at position 1185 bound P. gingivalis more efficiently than did control peptides containing Asn and Val at these positions, suggesting that electrostatic and hydrophobic interactions may contribute to Mfa1-SspB binding. In contrast, replacement of Pro or Gly at these positions was detrimental to adherence, suggesting that perturbation of the BAR secondary structure influences activity. The net effect of substitutions for Thr(1184) was less pronounced either positively or negatively than that at the other sites. These results define physicochemical characteristics of the interacting interface of Mfa1 and SspB and suggest that peptides or peptidomimetics with greater specific inhibitory activity than that of BAR can be developed. These compounds may represent potential therapeutics that target some of the first molecular interactions that allow P. gingivalis to colonize the oral cavity

    Arginine induced Streptococcus gordonii biofilm detachment using a novel 1 rotating-disc rheometry method

    No full text
    Oral diseases are one of the most common pathologies affecting human health. These diseases are typically associated with dental plaque-biofilms, through either build-up of the biofilm or dysbiosis of the microbial community. Arginine can disrupt dental plaque-biofilms, and maintain plaque homeostasis, making it an ideal therapeutic to combat the development of oral disease. Despite our understanding of the actions of arginine towards dental plaque-biofilms, it is still unclear how or if arginine effects the mechanical integrity of the dental plaque-biofilm. Here we adapted a rotating-disc rheometry assay, a method used to quantify marine biofilm fouling, to study how arginine treatment of Streptococcus gordonii biofilms influences biofilm detachment from surfaces. We demonstrate that the assay is highly sensitive at quantifying the presence of biofilm and the detachment or rearrangement of the biofilm structure as a function of shear stress. We demonstrate that arginine treatment leads to earlier detachment of the biofilm, indicating that arginine treatment weakens the biofilm, making it more susceptible to removal by shear stresses. Finally, we demonstrate that the biofilm disrupting affect is specific to arginine, and not a general property of amino acids, as S. gordonii biofilms treated with either glycine or lysine had mechanical properties similar to untreated biofilms. Our results add to the understanding that arginine targets biofilms by multifaceted mechanisms, both metabolic and physical, further promoting the potential of arginine as an active compound in dentifrices to maintain oral health

    A commercial SnF2 toothpaste formulation reduces simulated human plaque biofilm in a dynamic typodont model

    No full text
    Aims: we present a dynamic typodont biofilm model (DTBM) incorporating 1) human dentition anatomy, 2) fluid flow over intermittently fluid bathed tooth surfaces and 3) an oxic headspace to allow aerobic and anaerobic niches to develop naturally, as a screening tool to assess the effect of stannous fluoride (SnF2) toothpaste against a simulated human plaque biofilm (SPB). Methods and results: first, hydroxyapatite (HA) coupons were inoculated with human saliva/plaque and cultured at 37oC under air. Selected species representative of common commensal and anaerobic pathogens were quantified for relative abundance changes over 4d by PCR densitometry to confirm the culture conditions allowed the proliferation of these species. A continuous culture DTBM reactor on a rocker table was inoculated with saliva/plaque and incubated at 37°C for 24h. Tooth shear stress was estimated by particle tracking. A SnF2 toothpaste solution, or a sham rise was administered twice daily for 3d to mimic routine oral hygiene. SPB biomass was assessed by total bacterial DNA and methylene blue (MB) staining. Early colonizer aerobes and late colonizer anaerobes species were detected in the HA and DTBM, and the trends in changing abundance were consistent with those seen clinically. Conclusions: treatment with the SnF2 solution showed significant reductions of 53.05% and 54.4% in the SPB by MB staining and DNA, respectively. Significance and impact of study: The model has potential for assessing dentition anatomy and fluid flow on the efficacy of antimicrobial efficacy against localized SPB and may be amenable to the plaque index clinical evaluation

    A combination of zinc and arginine disrupt the mechanical integrity of dental biofilms

    No full text
    Mechanical cleaning remains the standard of care for maintaining oral hygiene. However, mechanical cleaning is often augmented with active therapeutics that further promote oral health. A dentifrice, consisting of the “Dual Zinc plus Arginine” (DZA) technology, was found to be effective at controlling bacteria using in vitro laboratory studies, translating to clinical efficacy to deliver plaque and gingivitis reduction benefits. Here we used biophysical analyses and confocal laser scanning microscopy, to understand how DZA dentifrice impacted the mechanical properties of dental plaque biofilms, with the objective of determining if changes to biofilm rheology enhances the removal of dental plaque. Using both uniaxial mechanical indentation and an adapted rotating-disc rheometry assay, it was found that DZA treatment compromised biofilm mechanical integrity, resulting in the biofilm being more susceptible to removal by shear forces, when compared to treatment with either arginine or zinc alone. Confocal laser scanning microscopy revealed that DZA treatment reduced the amount of extracellular polymeric slime within the biofilm, likely accounting for the reduced mechanical properties. We propose a model where arginine facilitates the entry of zinc into the biofilm, resulting in additive effects of the two activities towards dental plaque biofilms. Together, our results support the use of a dentifrice containing the Dual Zinc plus Arginine as part of daily oral hygiene regimens

    Quantitative characteristics of <i>P. gingivalis</i> biofilms.

    No full text
    <p>Composite image data were analyzed using Matlab softwares to obtain biomass, average thickness; and substratum coverage of 48 h homotypic <i>P. gingivalis</i> biofilms formed with GAM and GAM-CSE.</p><p>**<i>p</i><0.01; ***<i>p</i><0.001.</p

    FimA induced tolerance reduces Iκ-Bα degradation.

    No full text
    <p>(A) Human PBMCs were pre-treated with 1 µg/ml rFimA for 24 hrs before stimulation with 1 µg/ml of rMfa1 for various timepoints. Immunoblots (25 µg protein per well) were probed for IκBα and re-probed β-actin to ensure equal loading. (B) Mean (s.e.) normalized band intensities.</p
    corecore