3,017 research outputs found

    Numerical treatment of the energy equation in compressible flows simulations

    Full text link
    We analyze the conservation properties of various discretizations of the system of compressible Euler equations for shock-free flows, with special focus on the treatment of the energy equation and on the induced discrete equations for other thermodynamic quantities. The analysis is conducted both theoretically and numerically and considers two important factors characterizing the various formulations, namely the choice of the energy equation and the splitting used in the discretization of the convective terms. The energy equations analyzed are total and internal energy, total enthalpy, pressure, speed of sound and entropy. In all the cases examined the discretization of the convective terms is made with locally conservative and kinetic-energy preserving schemes. Some important relations between the various formulations are highlighted and the performances of the various schemes are assessed by considering two widely used test cases. Together with some popular formulations from the literature, also new and potentially useful ones are analyzed

    Asymptotically entropy conservative discretization of convective terms in compressible Euler equations

    Get PDF
    A new class of Asymptotically Entropy Conservative schemes is proposed for the numerical simulation of compressible (shock-free) turbulent flows. These schemes consist of a suitable spatial discretization of the convective terms in the Euler equations, which retains at the discrete level many important properties of the continuous formulation, resulting in enhanced reliability and robustness of the overall numerical method. In addition to the Kinetic Energy Preserving property, the formulation guarantees the preservation of pressure equilibrium in the case of uniform pressure and velocity distributions, and arbitrarily reduces the spurious production of entropy. The main feature of the proposed schemes is that, in contrast to existing Entropy Conservative schemes, which are based on the evaluation of costly transcendental functions, they are based on the specification of numerical fluxes involving only algebraic operations, resulting in an efficient and economical procedure. Numerical tests on a highly controlled one-dimensional problem, as well as on more realistic turbulent three-dimensional cases, are shown, together with a cost-efficiency study

    Imaging follow-up after liver transplantation

    Get PDF
    Liver transplantation (LT) represents the best treatment for end-stage chronic liver disease, acute liver failure and early stages of hepatocellular carcinoma. Radiologists should be aware of surgical techniques to distinguish a normal appearance from pathological findings. Imaging modalities, such as ultrasound, CT and MR, provide for rapid and reliable detection of vascular and biliary complications after LT. The role of imaging in the evaluation of rejection and primary graft dysfunction is less defined. This article illustrates the main surgical anastomoses during LT, the normal appearance and complications of the liver parenchyma and vascular and biliary structures.Liver transplantation (LT) represents the best treatment for end-stage chronic liver disease, acute liver failure and early stages of hepatocellular carcinoma. Radiologists should be aware of surgical techniques to distinguish a normal appearance from pathological findings. Imaging modalities, such as ultrasound, CT and MR, provide for rapid and reliable detection of vascular and biliary complications after LT. The role of imaging in the evaluation of rejection and primary graft dysfunction is less defined. This article illustrates the main surgical anastomoses during LT, the normal appearance and complications of the liver parenchyma and vascular and biliary structures

    Asymmetric dependence in hydrological extremes

    Full text link
    Extremal dependence describes the strength of correlation between the largest observations of two variables. It is usually measured with symmetric dependence coefficients that do not depend on the order of the variables. In many cases, there is a natural asymmetry between extreme observations that can not be captured by such coefficients. An example for such asymmetry are large discharges at an upstream and a downstream stations on a river network: an extreme discharge at the upstream station will directly influence the discharge at the downstream station, but not vice versa. Simple measures for asymmetric dependence in extreme events have not yet been investigated. We propose the asymmetric tail Kendall's Ď„\tau as a measure for extremal dependence that is sensitive to asymmetric behaviour in the largest observations. It essentially computes the classical Kendall's Ď„\tau but conditioned on the extreme observations of one of the two variables. We show theoretical properties of this new coefficient and derive a formula to compute it for existing copula models. We further study its effectiveness and connections to causality in simulation experiments. We apply our methodology to a case study on river networks in the United Kingdom to illustrate the importance of measuring asymmetric extremal dependence in hydrology. Our results show that there is important structural information in the asymmetry that would have been missed by a symmetric measure. Our methodology is an easy but effective tool that can be applied in exploratory analysis for understanding the connections among variables and to detect possible asymmetric dependencies

    Long-term radiographic and clinical-functional outcomes of isolated, displaced, closed talar neck and body fractures treated by ORIF: the timing of surgical management

    Get PDF
    Background: The main purpose of this retrospective case series study was to evaluate long-term radiographic and clinical outcomes of a consecutive series of patients diagnosed with isolated, displaced, closed talar neck or body fractures treated by open reduction and internal fixation (ORIF). Secondly, the aim was to verify the influence of the location of talar fractures on the outcomes, the prognostic value of the Hawkins sign, whether operative delays promote avascular necrosis (AVN) and if the fractures require emergent surgical management. Methods: From January 2007 to December 2012, at our institution, 31 patients underwent ORIF through the use of screws. On the basis of Inokuchi criteria, the injuries were divided between neck and body fractures, which were classified according to Hawkins and Sneppen, respectively. The patients included were divided into two groups in relation to fracture location and complexity. Radiographic assessment focused on reduction quality, bone healing, the Hawkins sign and post-traumatic arthritis (PTA) development. For the clinical evaluation, clinical-functional scores (AOFAS Ankle-Hindfoot Score; MFS; FFI-17; SF-36) and VAS were determined, and statistical analysis was performed. Results: 27 patients, 19 males and 8 females, mean age 38.3 years, were included with an average follow-up period of 83.2 months (range 49\u2013119). There were 9 neck and 19 body fractures; their reduction was anatomical or nearly anatomical in 22 cases, and all reached radiographic consolidation after a mean period of 3.4 months (range 1.7\u20137). The Hawkins sign was observed in 9 cases, in which necrosis did not develop. With a 0\u201311 day surgical timing interval, more than 60% of the patients obtained good or fair results with different scores, while 18 (66.7%) were completely satisfied (VAS: 9\u201310). The early complications included malunions (21.4%) and wound problems (25%); the late complications involved AVN (25%) and PTA (78.6%). Conclusions: Despite a high rate of long-term complications, satisfactory clinical results were achieved. Talar fracture location did not influence the outcomes, the Hawkins sign was confirmed as a positive prognostic factor, and operation timing did not influence AVN development. Hence, these injuries do not require emergent surgical management by ORIF

    Performance and error analysis of structure-preserving time-integration procedures for incompressible-flow simulations

    Get PDF
    The effects of kinetic-energy preservation errors due to Runge-Kutta (RK) temporal integrators have been analyzed for the case of large-eddy simulations of incompressible turbulent channel flow. Simulations have been run using the open-source solver Xcompact3D with an implicit spectral vanishing viscosity model and a variety of temporal Runge-Kutta integrators. Explicit pseudo-symplectic schemes, with improved energy preservation properties, have been compared to standard RK methods. The results show a marked decrease in the temporal error for higher-order pseudo-symplectic methods, and suggest that these schemes could be used to attain results comparable to traditional methods at a reduced computational cost.Postprint (published version
    • …
    corecore