1,503 research outputs found

    A Partition-Based Implementation of the Relaxed ADMM for Distributed Convex Optimization over Lossy Networks

    Full text link
    In this paper we propose a distributed implementation of the relaxed Alternating Direction Method of Multipliers algorithm (R-ADMM) for optimization of a separable convex cost function, whose terms are stored by a set of interacting agents, one for each agent. Specifically the local cost stored by each node is in general a function of both the state of the node and the states of its neighbors, a framework that we refer to as `partition-based' optimization. This framework presents a great flexibility and can be adapted to a large number of different applications. We show that the partition-based R-ADMM algorithm we introduce is linked to the relaxed Peaceman-Rachford Splitting (R-PRS) operator which, historically, has been introduced in the literature to find the zeros of sum of functions. Interestingly, making use of non expansive operator theory, the proposed algorithm is shown to be provably robust against random packet losses that might occur in the communication between neighboring nodes. Finally, the effectiveness of the proposed algorithm is confirmed by a set of compelling numerical simulations run over random geometric graphs subject to i.i.d. random packet losses.Comment: Full version of the paper to be presented at Conference on Decision and Control (CDC) 201

    Asynchronous Distributed Optimization over Lossy Networks via Relaxed ADMM: Stability and Linear Convergence

    Full text link
    In this work we focus on the problem of minimizing the sum of convex cost functions in a distributed fashion over a peer-to-peer network. In particular, we are interested in the case in which communications between nodes are prone to failures and the agents are not synchronized among themselves. We address the problem proposing a modified version of the relaxed ADMM, which corresponds to the Peaceman-Rachford splitting method applied to the dual. By exploiting results from operator theory, we are able to prove the almost sure convergence of the proposed algorithm under general assumptions on the distribution of communication loss and node activation events. By further assuming the cost functions to be strongly convex, we prove the linear convergence of the algorithm in mean to a neighborhood of the optimal solution, and provide an upper bound to the convergence rate. Finally, we present numerical results testing the proposed method in different scenarios.Comment: To appear in IEEE Transactions on Automatic Contro

    Multi-agents adaptive estimation and coverage control using Gaussian regression

    Full text link
    We consider a scenario where the aim of a group of agents is to perform the optimal coverage of a region according to a sensory function. In particular, centroidal Voronoi partitions have to be computed. The difficulty of the task is that the sensory function is unknown and has to be reconstructed on line from noisy measurements. Hence, estimation and coverage needs to be performed at the same time. We cast the problem in a Bayesian regression framework, where the sensory function is seen as a Gaussian random field. Then, we design a set of control inputs which try to well balance coverage and estimation, also discussing convergence properties of the algorithm. Numerical experiments show the effectivness of the new approach
    • …
    corecore