421 research outputs found

    Testing the gravitational field generated by a quantum superposition

    Get PDF
    What gravitational field is generated by a massive quantum system in a spatial superposition? Despite decades of intensive theoretical and experimental research, we still do not know the answer. On the experimental side, the difficulty lies in the fact that gravity is weak and requires large masses to be detectable. However, it becomes increasingly difficult to generate spatial quantum superpositions for increasingly large masses, in light of the stronger environmental effects on such systems. Clearly, a delicate balance between the need for strong gravitational effects and weak decoherence should be found. We show that such a trade off could be achieved in an optomechanics scenario that allows to witness whether the gravitational field generated by a quantum system in a spatial superposition is in a coherent superposition or not. We estimate the magnitude of the effect and show that it offers perspectives for observability

    Testing the gravitational field generated by a quantum superposition

    Get PDF
    What gravitational field is generated by a massive quantum system in a spatial superposition? Despite decades of intensive theoretical and experimental research, we still do not know the answer. On the experimental side, the difficulty lies in the fact that gravity is weak and requires large masses to be detectable. However, it becomes increasingly difficult to generate spatial quantum superpositions for increasingly large masses, in light of the stronger environmental effects on such systems. Clearly, a delicate balance between the need for strong gravitational effects and weak decoherence should be found. We show that such a trade off could be achieved in an optomechanics scenario that allows to witness whether the gravitational field generated by a quantum system in a spatial superposition is in a coherent superposition or not. We estimate the magnitude of the effect and show that it offers perspectives for observability

    Non-interferometric test of the Continuous Spontaneous Localization model based on rotational optomechanics

    Get PDF
    The Continuous Spontaneous Localization (CSL) model is the best known and studied among collapse models, which modify quantum mechanics and identify the fundamental reasons behind the unobservability of quantum superpositions at the macroscopic scale. Albeit several tests were performed during the last decade, up to date the CSL parameter space still exhibits a vast unexplored region. Here, we study and propose an unattempted non-interferometric test aimed to fill this gap. We show that the angular momentum diffusion predicted by CSL heavily constrains the parametric values of the model when applied to a macroscopic object

    Testing the foundation of quantum physics in space via Interferometric and non-interferometric experiments with mesoscopic nanoparticles

    Get PDF
    Quantum technologies are opening novel avenues for applied and fundamental science at an impressive pace. In this perspective article, we focus on the promises coming from the combination of quantum technologies and space science to test the very foundations of quantum physics and, possibly, new physics. In particular, we survey the field of mesoscopic superpositions of nanoparticles and the potential of interferometric and non-interferometric experiments in space for the investigation of the superposition principle of quantum mechanics and the quantum-to-classical transition. We delve into the possibilities offered by the state-of-the-art of nanoparticle physics projected in the space environment and discuss the numerous challenges, and the corresponding potential advancements, that the space environment presents. In doing this, we also offer an ab-initio estimate of the potential of space-based interferometry with some of the largest systems ever considered and show that there is room for tests of quantum mechanics at an unprecedented level of detail
    corecore