2 research outputs found

    Clustering COVID-19 ARDS patients through the first days of ICU admission. An analysis of the CIBERESUCICOVID Cohort

    Full text link
    Background Acute respiratory distress syndrome (ARDS) can be classified into sub-phenotypes according to different inflammatory/clinical status. Prognostic enrichment was achieved by grouping patients into hypoinflammatory or hyperinflammatory sub-phenotypes, even though the time of analysis may change the classification according to treatment response or disease evolution. We aimed to evaluate when patients can be clustered in more than 1 group, and how they may change the clustering of patients using data of baseline or day 3, and the prognosis of patients according to their evolution by changing or not the cluster.Methods Multicenter, observational prospective, and retrospective study of patients admitted due to ARDS related to COVID-19 infection in Spain. Patients were grouped according to a clustering mixed-type data algorithm (k-prototypes) using continuous and categorical readily available variables at baseline and day 3.Results Of 6205 patients, 3743 (60%) were included in the study. According to silhouette analysis, patients were grouped in two clusters. At baseline, 1402 (37%) patients were included in cluster 1 and 2341(63%) in cluster 2. On day 3, 1557(42%) patients were included in cluster 1 and 2086 (57%) in cluster 2. The patients included in cluster 2 were older and more frequently hypertensive and had a higher prevalence of shock, organ dysfunction, inflammatory biomarkers, and worst respiratory indexes at both time points. The 90-day mortality was higher in cluster 2 at both clustering processes (43.8% [n = 1025] versus 27.3% [n = 383] at baseline, and 49% [n = 1023] versus 20.6% [n = 321] on day 3). Four hundred and fifty-eight (33%) patients clustered in the first group were clustered in the second group on day 3. In contrast, 638 (27%) patients clustered in the second group were clustered in the first group on day 3.Conclusions During the first days, patients can be clustered into two groups and the process of clustering patients may change as they continue to evolve. This means that despite a vast majority of patients remaining in the same cluster, a minority reaching 33% of patients analyzed may be re-categorized into different clusters based on their progress. Such changes can significantly impact their prognosis

    The prognostic relevance of a gene expression signature in MRI-defined highly vascularized glioblastoma

    No full text
    Background: The vascular heterogeneity of glioblastomas (GB) remains an important area of research, since tumor progression and patient prognosis are closely tied to this feature. With this study, we aim to identify gene expression profiles associated with MRI-defined tumor vascularity and to investigate its relationship with patient prognosis. Methods: The study employed MRI parameters calculated with DSC Perfusion Quantification of ONCOhabitats glioma analysis software and RNA-seq data from the TCGA-GBM project dataset. In our study, we had a total of 147 RNA-seq samples, which 15 of them also had MRI parameter information. We analyzed the gene expression profiles associated with MRI-defined tumor vascularity using differential gene expression analysis and performed Log-rank tests to assess the correlation between the identified genes and patient prognosis. Results: The findings of our research reveal a set of 21 overexpressed genes associated with the high vascularity pattern. Notably, several of these overexpressed genes have been previously implicated in worse prognosis based on existing literature. Our log-rank test further validates that the collective upregulation of these genes is indeed correlated with an unfavorable prognosis. This set of genes includes a variety of molecules, such as cytokines, receptors, ligands, and other molecules with diverse functions. Conclusions: Our findings suggest that the set of 21 overexpressed genes in the High Vascularity group could potentially serve as prognostic markers for GB patients. These results highlight the importance of further investigating the relationship between the molecules such as cytokines or receptors underlying the vascularity in GB and its observation through MRI and developing targeted therapies for this aggressive disease
    corecore