304 research outputs found

    New Resin-Based Bulk-Fill Composites: in vitro Evaluation of Micro-Hardness and Depth of Cure as Infection Risk Indexes

    Get PDF
    The current in vitro study evaluated the Vickers hardness number (VHN) and hardness ratio of four bulk-fill composites (VisCalor bulk; Admira Fusion x-tra; x-tra fil; and GrandioSO x-tra-Voco, Cuxhaven, Germany) to assess the risk of bacterial colonization in comparison with standard composite materials. Thirty samples were prepared for each group. The VHN of both the external (top) and internal surface (bottom) was determined with a micro-hardness tester (200 g load for 15 s), and the hardness ratio was also calculated for each sample. Subsequently, storage in an acidic soft drink (Coca-Cola, Coca-Cola Company, Milano, Italy) was performed; for each group, 10 samples were stored for 1 day, while another 10 were stored for 7 days and the remaining 10 were kept in water as controls. A significant reduction in VHN was shown for all the groups when comparing the external versus internal side (P < 0.05), although the hardness ratio was greater than 0.80, resulting in an adequate polymerization. Regarding the acid storage, all the groups showed a significant decrease of VHN when compared with the controls, both after 1 day (P < 0.05) and after 7 days (P < 0.001). All the products showed adequate depth of cure without further risk of bacterial colonization. However, acid exposure negatively affected micro-hardness values, which might promote subsequent colonization

    Interactions of Neutrophils with the Polymeric Molecular Components of the Biofilm Matrix in the Context of Implant-Associated Bone and Joint Infections

    Get PDF
    In the presence of orthopedic implants, opportunistic pathogens can easily colonize the biomaterial surfaces, forming protective biofilms. Life in biofilm is a central pathogenetic mechanism enabling bacteria to elude the host immune response and survive conventional medical treatments. The formation of mature biofilms is universally recognized as the main cause of septic prosthetic failures. Neutrophils are the first leukocytes to be recruited at the site of infection. They are highly efficient in detecting and killing planktonic bacteria. However, the interactions of these fundamental effector cells of the immune system with the biofilm matrix, which is the true interface of a biofilm with the host cells, have only recently started to be unveiled and are still to be fully understood. Biofilm matrix macromolecules consist of exopolysaccharides, proteins, lipids, teichoic acids, and the most recently described extracellular DNA. The latter can also be stolen from neutrophil extracellular traps (NETs) by bacteria, who use it to strengthen their biofilms. This paper aims to review the specific interactions that neutrophils develop when they physically encounter the matrix of a biofilm and come to interact with its polymeric molecular components

    Searching for Virulence Factors among Staphylococcus lugdunensis Isolates from Orthopedic Infections: Correlation of β-hemolysin, hemolysin III, and slush Genes with Hemolytic Activity and Synergistic Hemolytic Activity

    Get PDF
    Staphylococcus lugdunensis is an emerging high-virulent pathogen. Here, the presence and expression of virulence genes (icaA, fbl, vwbl, fbpA, slush A, B and C, and genes of the putative beta-hemolysin and hemolysin III) and the ability to induce synergistic hemolytic activity and hemolysis after 24, 48 and 72 h were investigated in a collection of twenty-two S. lugdunensis clinical isolates. The collection of isolates, mainly from implant orthopedic infections, had previously been grouped by ribotyping/dendrogram analysis and studied for biofilm matrices, biomasses and antibiotic resistances. Two isolates, constituting a unique small ribogroup sharing the same cluster, exhibited an amplicon size of the slush operon (S. lugdunensis synergistic hemolysin) which was shorter than the expected 977 bp. This outcome can predict the genetic lineage of the S. lugdunensis strains. One isolate (cra1342) presented two deletions: one of 90 bp in slush A and the other of 91 bp in slush B. Another isolate (N860314) showed a single 193 bp deletion, which encompassed part of the slush B terminal sequence and most of slush C. The isolate N860314 was devoid of hemolytic activity after 24 h, and the first consideration was that the deleted region deals with the coding of the active enzymatic site of the slush hemolysin. On the other hand, cra1342 and N860314 isolates with different slush deletions and with hemolytic activity after 24 and 48 h, respectively, could have replaced the hemolytic phenotype through other processes

    Multi dynamic extraction: An innovative method to obtain a standardized chemically and biologically reproducible polyphenol extract from poplar-type propolis to be used for its anti-infective properties

    Get PDF
    Antimicrobial activity is a well-known property of propolis, making it a candidate for antimicrobial surfaces in biomedical devices. Nevertheless, large-scale use of propolis as an anti-infective agent is limited by the heterogeneity of its chemical composition and consequent variation in antimicrobial activity. The aim of this study was to demonstrate that the multi dynamic extraction (M.E.D.) method produces standardized polyphenolic mixtures from poplar-type propolis, with reproducible chemical composition and anti-microbial activity, independently from the chemical composition of the starting raw propolis. Three raw propolis samples, from Europe, America, and Asia, were analyzed for their polyphenol chemical composition by means of HPLC-UV and then combined to obtain three mixtures of propolis, which werme submitted to the M.E.D. extraction method. The chemical composition and the antimicrobial activity of M.E.D. propolis against bacteria and fungi were determined. The three M.E.D. propolis showed similar chemical compositions and antimicrobial activities, exhibiting no relevant differences against antibiotic-susceptible and antibiotic-resistant strains. The batch-to-batch reproducibility of propolis extracts obtained with the M.E.D. method encourages the design of drugs alternative to traditional antibiotics and the development of anti-infective surface-modified biomaterials

    Cytocompatibility and Antibacterial Properties of Capping Materials

    Get PDF
    The aim of this study was to evaluate and compare the antimicrobial activity and cytocompatibility of six different pulp-capping materials: Dycal (Dentsply), Calcicur (Voco), Calcimol LC (Voco), TheraCal LC (Bisco), MTA Angelus (Angelus), and Biodentine (Septodont). To evaluate antimicrobial activity, materials were challenged in vitro with Streptococcus mutans, Streptococcus salivarius, and Streptococcus sanguis in the agar disc diffusion test. Cytocompatibility of the assayed materials towards rat MDPC-23 cells was evaluated at different times by both MTT and apoptosis assays. Results significantly differed among the different materials tested. Both bacterial growth inhibition halos and cytocompatibility performances were significantly different among materials with different composition. MTA-based products showed lower cytotoxicity and valuable antibacterial activity, different from calcium hydroxide-based materials, which exhibited not only higher antibacterial activity but also higher cytotoxicity

    Comparison of Automated Ribotyping, spa Typing, and MLST in 108 Clinical Isolates of Staphylococcus aureus from Orthopedic Infections

    Get PDF
    108 isolates of Staphylococcus aureus, belonging to six large ribogroups according to the automated Ribo-Printer® system, were studied with two highly used molecular methods for epidemiological studies, namely multi-locus sequence typing (MLST) and spa typing, followed by BURP and eBURST v3 analysis for clustering spa types and sequence (ST) types. The aim was to evaluate whether automated ribotyping could be considered a useful screening tool for identifying S. aureus genetic lineages with respect to spa typing and MLST. Clarifying the relationship of riboprinting with these typing methods and establishing whether ribogroups fit single clonal complexes were two main objectives. Further information on the genetic profile of the isolates was obtained from agr typing and the search for the mecA, tst genes, and the IS256 insertion sequence. Automated ribotyping has been shown to predict spa clonal complexes and MLST clonal complexes. The high cost and lower discriminatory power of automated ribotyping compared to spa and MSLT typing could be an obstacle to fine genotyping analyzes, especially when high discriminatory power is required. On the other hand, numerous advantages such as automation, ease and speed of execution, stability, typeability and reproducibility make ribotyping a reliable method to be juxtaposed to gold standard methods

    Vitamin E modifies poly(D,L)lactic acid wettability and reduces bacterial adhesion

    Get PDF
    Highly biocompatible polylactic acid (PLA)-derived polymers are used for different biomedical applications such as orthopaedic screws and drug delivery devices. Nevertheless their clinical use is limited by their proinflammatory characteristics. Vitamin E (α-tocopherol, Vit. E), a natural antioxidant and anti-inflammatory agent has been used to improve different biomaterials biostability [1], and among them also P(D,L)LA [2]. In this work, addition of Vit.E (10-40% w/v) to P(D,L)LA films obtained by solvent casting technique increased polymer surface wettability and human plasma protein adsorption, while addition of Vit.E acetate (Vit.E Ac, 10-40% w/v), the acetic ester of α-tocopherol, often used as an alternative to Vit.E itself, failed in modifying polymer wettability. On the other hand, bacterial adhesion experiments onto control, Vit.E and Vit.E Ac enriched P(D,L)LA films showed that both presence of Vit.E and Vit.E Ac was able to reduce the adhesion of the RP62A Staphylococcus epidermidis strain [3]. In particular, in PLA + Vit. E samples the decrease in bacterial adhesion was of 56%, while, in the case of PLA + Vit. E Ac samples the decrease was of 40%. These preliminary data suggest that Vit. E addition to PLA containing medical devices could improve their resistance to bacterial infections

    2001_Infiammazione_Le cellule

    No full text
    • …
    corecore