52 research outputs found
Pattern recognition of star constellations for spacecraft applications
A software system for a star imager for “on-line ” satellite attitude determination is described. The system works with a single standard commercial CCD-camera with a high aperture lens and an on-board star catalogue. It is capable of both an initial coarse attitude determination without any a priori knowledge of the satellite orientation and a high accuracy attitude determination based on prediction and averaging of several identified star constellations. In the high accuracy mode the star imager aims at an accuracy better than 2 arc sec. with a processing time of less than a few seconds. The star imager is developed for the Danish “micro satellite ” Oersted
Algorithm for Rapid Searching Among Star-Catalog Entries
An algorithm searches a star catalog to identify guide stars within the field of view of a telescope or camera. The algorithm is fast: the number of computations needed to perform the search is approximately proportional to the logarithm of the number of stars in the catalog. The algorithm requires the prior organization of the star catalog into a hierarchy utilizing independent spherical coverings (see figure), such that each successively higher level contains fewer elements. In the lowest and most numerous level of the hierarchy, the elements are individual stars in the star catalog. The next higher level contains a spherical covering (a constellation of n points on a sphere that minimizes the maximum distance of any point on the sphere from the closest one of the n points), the next higher level contains a smaller spherical covering, and so forth, ending at the highest level, which contains one element representing the point of entry into the search structure. With necessary exceptions at the lowest and highest levels, each element at each level is labeled in terms of the element to which it is linked in the next higher level and the first element to which it is linked in the next lower level. Each element is also labeled in terms of (1) its coordinates on the celestial sphere and (2) the largest angular distance to any element in any lower level in the hierarchy. The elements at all levels of the hierarchy are numbered on a single list, such that the elements of each constellation at each level are numbered consecutively. The algorithm is recursive. The input required to start the algorithm comprises the coordinates of a point on the celestial sphere. Attention is then focused on individual elements of the hierarchy, starting from the topmost one, as follows: The angle between the input point and the element under consideration is calculated. If the calculated angle is larger than the sum of (1) the predetermined angle to the most distant element plus (2) the half field of view of the telescope, then no stars will be within the field of view and this recursive part of the algorithm is terminated
Metrology System for a Large, Somewhat Flexible Telescope
A proposed metrology system would be incorporated into a proposed telescope that would include focusing optics on a rigid bench connected via a deployable mast to another rigid bench holding a focal-plane array of photon counting photodetectors. Deformations of the deployable mast would give rise to optical misalignments that would alter the directions (and, hence, locations) of incidence of photons on the focal plane. The metrology system would measure the relative displacement of the focusing- optics bench and the focal-plane array bench. The measurement data would be used in post-processing of the digitized photodetector outputs to compensate for the mast-deformation-induced changes in the locations of incidence of photons on the focal plane, thereby making it possible to determine the original directions of incidence of photons with greater accuracy. The proposed metrology system is designed specifically for the Nuclear Spectroscopic Telescope Array (NuSTAR) a proposed spaceborne x-ray telescope. The basic principles of design and operation are also applicable to other large, somewhat flexible telescopes, both terrestrial and spaceborne. In the NuSTAR, the structural member connecting the optical bench and the photodetector array would be a 10-m-long deployable mast, and there is a requirement to keep errors in measured directions of incidence of photons below 10 arc seconds (3 sigma). The proposed system would include three diode lasers that would be mounted on the focusing-optics bench. For clarity, only one laser is shown in the figure, which is a greatly simplified schematic diagram of the system. Each laser would be aimed at a position-sensitive photodiode that would be mounted on the detector bench alongside the aforementioned telescope photodetector array. The diode lasers would operate at a wavelength of 830 nm, each at a power of 200 mW. Each laser beam would be focused to a spot of .1-mm diameter on the corresponding position-sensitive photodiode. To reduce the effect of sunlight on the measurements, a one-stage light baffle and an 830-nm transmission filter of 10-nm bandwidth would be placed in front of the position- sensitive photodiode. For each metrology reading, the output of the position-sensitive detector would be sampled and digitized twice: once with the lasers turned on, then once with the lasers turned off. The data from these two sets of samples would be subtracted from each other to further reduce the effects of sun glints or other background light sources
Metrology Camera System Using Two-Color Interferometry
A metrology system that contains no moving parts simultaneously measures the bearings and ranges of multiple reflective targets in its vicinity, enabling determination of the three-dimensional (3D) positions of the targets with submillimeter accuracy. The system combines a direction-measuring metrology camera and an interferometric range-finding subsystem. Because the system is based partly on a prior instrument denoted the Modulation Sideband Technology for Absolute Ranging (MSTAR) sensor and because of its 3D capability, the system is denoted the MSTAR3D. Developed for use in measuring the shape (for the purpose of compensating for distortion) of large structures like radar antennas, it can also be used to measure positions of multiple targets in the course of conventional terrestrial surveying. A diagram of the system is shown in the figure. One of the targets is a reference target having a known, constant distance with respect to the system. The system comprises a laser for generating local and target beams at a carrier frequency; a frequency shifting unit to introduce a frequency shift offset between the target and local beams; a pair of high-speed modulators that apply modulation to the carrier frequency in the local and target beams to produce a series of modulation sidebands, the highspeed modulators having modulation frequencies of FL and FM; a target beam launcher that illuminates the targets with the target beam; optics and a multipixel photodetector; a local beam launcher that launches the local beam towards the multi-pixel photodetector; a mirror for projecting to the optics a portion of the target beam reflected from the targets, the optics being configured to focus the portion of the target beam at the multi-pixel photodetector; and a signal-processing unit connected to the photodetector. The portion of the target beam reflected from the targets produces spots on the multi-pixel photodetector corresponding to the targets, respectively, and the signal-processing unit centroids the spots to determine bearings of the targets, respectively. As the spots oscillate in intensity because they are mixed with the local laser beam that is flood illuminating the focal plane, the phase of oscillation of each spot is measured, the phase of sidebands in the oscillation of each spot being proportional to a distance to the corresponding target relative to the reference target A
Calibration and alignment of metrology system for the Nuclear Spectroscopic Telescope Array mission
A metrology system to measure the on-orbit movement of a ten
meter mast has been built for the Nuclear Spectroscopic Telescope Array (NuSTAR) x-ray observatory. In this paper, the metrology system is described, and the performance is measured. The laser beam stability is discussed in detail. Pre-launch alignment and calibration are also described. The invisible infrared laser beams must be aligned to their corresponding detectors without deploying the telescope in Earth’s gravity. Finally, a possible method for in-flight calibration of the metrology system is described
Smoothing-Based Relative Navigation and Coded Aperture Imaging
This project will develop an efficient smoothing software for incremental estimation of the relative poses and velocities between multiple, small spacecraft in a formation, and a small, long range depth sensor based on coded aperture imaging that is capable of identifying other spacecraft in the formation. The smoothing algorithm will obtain the maximum a posteriori estimate of the relative poses between the spacecraft by using all available sensor information in the spacecraft formation.This algorithm will be portable between different satellite platforms that possess different sensor suites and computational capabilities, and will be adaptable in the case that one or more satellites in the formation become inoperable. It will obtain a solution that will approach an exact solution, as opposed to one with linearization approximation that is typical of filtering algorithms. Thus, the algorithms developed and demonstrated as part of this program will enhance the applicability of small spacecraft to multi-platform operations, such as precisely aligned constellations and fractionated satellite systems
Fuzzy Image Processing in Sun Sensor
©2001 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.Presented at the 10th IEEE International Conference on Fuzzy Systems, 2-5 December 2001, Melbourne, Australia.DOI: 10.1109/FUZZ.2001.1008905Sun sensors are widely used in spacecraft attitude determination subsystems to provide a measurement of the Sun vector in spacecraft coordinates. At the Jet Propulsion Laboratory, California Institute of Technology, there is an ongoing research activity to utilize Micro Electro Mechanical Systems (MEMS) processes to develop a smaller and lighter Sun sensor for space applications. A prototype Sun sensor has been designed and constructed. It consists of a piece of silicon coated with a thin layer of chrome, and a layer of gold with hundreds of small pinholes, placed on top of an image detector at a distance of less than a millimeter. Images of the Sun are formed on the detector when the Sun illuminates the assembly. Software algorithms must be able to identify the individual pinholes on the image detector and calculate the angle to the Sun. Fuzzy image processing is utilized in this process. This paper describes how the fuzzy image processing is implemented in the instrument. Also, a camera pin hole model is constructed and used to evaluate the accuracy of the Sun sensor
A Multi-Stage Neural Network for Automatic Target Detection
©1998 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.Presented at the 1998 International Joint Conference on Neural Networks (IJCNN) Anchorage, Alaska, May 1998.DOI: 10.1109/IJCNN.1998.682268Automatic Target Recognition (ATR) involves processing two-dimensional images for detecting, classifying, and tracking targets. The first stage in ATR is the detection process. This involves discrimination between target and non-target objects in a scene. In this paper, we shall discuss a novel approach which addresses the target detection process. This method extracts relevant object features utilizing principal component analysis. These extracted features are then presented to a multi-stage neural network which allows an overall increase in detection rate, while decreasing the false positive alarm rate. We shall discuss the techniques involved and present some detection results that have been implemented on the multi-stage neural network
- …