11 research outputs found

    DataSheet_1_Novel method to quantify peptidylarginine deiminase activity shows distinct citrullination patterns in rheumatoid and juvenile idiopathic arthritis.pdf

    No full text
    IntroductionPeptidylarginine deiminases (PADs) mediate citrullination, an irreversible posttranslational modification that converts arginine to citrulline residues in proteins. Rheumatoid arthritis (RA) is characterized by unique autoantibodies that recognize citrullinated peptides, which are highly specific for this disease. However, the mechanism preceding the anti-citrulline response remains largely unclear. PAD enzymes are known to fuel the autoimmune response by generating autoreactive epitopes, and sustain local synovial inflammation through neutrophil extracellular trap formation. Therefore, detecting endogenous PAD activity is important to understand the pathogenesis of arthritis.MethodsIn this study, we improved a fluorescent in vitro assay to enable endogenous PAD activity characterization in complex samples. We combine the use of an in-house synthetic, arginine-rich substrate and a negatively charged dye molecule to visualize enzyme activity.ResultsThis pioneering PAD assay allowed profiling of active citrullination in leukocytes and in local and systemic samples of an arthritis cohort. Our results reveal that RA and juvenile idiopathic arthritis (JIA) synovial fluids display similar levels of PAD activity. In contrast, citrullination was limited in joints of patients suffering from gout or Lyme’s disease. Interestingly, in blood, a higher level of extracellular citrullination was only found in anti-CCP-positive RA patients.DiscussionOur finding suggests that enhanced synovial PAD activity drives the loss in tolerance towards citrullinated proteins and that systemic citrullination may indicate the risk for developing citrulline-specific autoimmunity.</p

    Image_1_Novel method to quantify peptidylarginine deiminase activity shows distinct citrullination patterns in rheumatoid and juvenile idiopathic arthritis.jpeg

    No full text
    IntroductionPeptidylarginine deiminases (PADs) mediate citrullination, an irreversible posttranslational modification that converts arginine to citrulline residues in proteins. Rheumatoid arthritis (RA) is characterized by unique autoantibodies that recognize citrullinated peptides, which are highly specific for this disease. However, the mechanism preceding the anti-citrulline response remains largely unclear. PAD enzymes are known to fuel the autoimmune response by generating autoreactive epitopes, and sustain local synovial inflammation through neutrophil extracellular trap formation. Therefore, detecting endogenous PAD activity is important to understand the pathogenesis of arthritis.MethodsIn this study, we improved a fluorescent in vitro assay to enable endogenous PAD activity characterization in complex samples. We combine the use of an in-house synthetic, arginine-rich substrate and a negatively charged dye molecule to visualize enzyme activity.ResultsThis pioneering PAD assay allowed profiling of active citrullination in leukocytes and in local and systemic samples of an arthritis cohort. Our results reveal that RA and juvenile idiopathic arthritis (JIA) synovial fluids display similar levels of PAD activity. In contrast, citrullination was limited in joints of patients suffering from gout or Lyme’s disease. Interestingly, in blood, a higher level of extracellular citrullination was only found in anti-CCP-positive RA patients.DiscussionOur finding suggests that enhanced synovial PAD activity drives the loss in tolerance towards citrullinated proteins and that systemic citrullination may indicate the risk for developing citrulline-specific autoimmunity.</p

    Additional file 3: of Clinical features of children with enthesitis-related juvenile idiopathic arthritis / juvenile spondyloarthritis followed in a French tertiary care pediatric rheumatology centre

    No full text
    Figure S2. Biological therapy: time to introduction and remission rate. Disease duration before introduction of a first line of biological therapy (years). Remission rate after introduction of a biological therapy (years). Remission was defined as the absence of any articular involvement (both peripheral and axial) and any enthesial involvement for at least six months. (DOCX 104 kb

    Table_4_Curation and expansion of the Human Phenotype Ontology for systemic autoinflammatory diseases improves phenotype-driven disease-matching.xlsx

    No full text
    IntroductionAccurate and standardized phenotypic descriptions are essential in diagnosing rare diseases and discovering new diseases, and the Human Phenotype Ontology (HPO) system was developed to provide a rich collection of hierarchical phenotypic descriptions. However, although the HPO terms for inborn errors of immunity have been improved and curated, it has not been investigated whether this curation improves the diagnosis of systemic autoinflammatory disease (SAID) patients. Here, we aimed to study if improved HPO annotation for SAIDs enhanced SAID identification and to demonstrate the potential of phenotype-driven genome diagnostics using curated HPO terms for SAIDs.MethodsWe collected HPO terms from 98 genetically confirmed SAID patients across eight different European SAID expertise centers and used the LIRICAL (Likelihood Ratio Interpretation of Clinical Abnormalities) computational algorithm to estimate the effect of HPO curation on the prioritization of the correct SAID for each patient.ResultsOur results show that the percentage of correct diagnoses increased from 66% to 86% and that the number of diagnoses with the highest ranking increased from 38 to 45. In a further pilot study, curation also improved HPO-based whole-exome sequencing (WES) analysis, diagnosing 10/12 patients before and 12/12 after curation. In addition, the average number of candidate diseases that needed to be interpreted decreased from 35 to 2.DiscussionThis study demonstrates that curation of HPO terms can increase identification of the correct diagnosis, emphasizing the high potential of HPO-based genome diagnostics for SAIDs.</p

    Image_1_Curation and expansion of the Human Phenotype Ontology for systemic autoinflammatory diseases improves phenotype-driven disease-matching.pdf

    No full text
    IntroductionAccurate and standardized phenotypic descriptions are essential in diagnosing rare diseases and discovering new diseases, and the Human Phenotype Ontology (HPO) system was developed to provide a rich collection of hierarchical phenotypic descriptions. However, although the HPO terms for inborn errors of immunity have been improved and curated, it has not been investigated whether this curation improves the diagnosis of systemic autoinflammatory disease (SAID) patients. Here, we aimed to study if improved HPO annotation for SAIDs enhanced SAID identification and to demonstrate the potential of phenotype-driven genome diagnostics using curated HPO terms for SAIDs.MethodsWe collected HPO terms from 98 genetically confirmed SAID patients across eight different European SAID expertise centers and used the LIRICAL (Likelihood Ratio Interpretation of Clinical Abnormalities) computational algorithm to estimate the effect of HPO curation on the prioritization of the correct SAID for each patient.ResultsOur results show that the percentage of correct diagnoses increased from 66% to 86% and that the number of diagnoses with the highest ranking increased from 38 to 45. In a further pilot study, curation also improved HPO-based whole-exome sequencing (WES) analysis, diagnosing 10/12 patients before and 12/12 after curation. In addition, the average number of candidate diseases that needed to be interpreted decreased from 35 to 2.DiscussionThis study demonstrates that curation of HPO terms can increase identification of the correct diagnosis, emphasizing the high potential of HPO-based genome diagnostics for SAIDs.</p

    Table_2_Curation and expansion of the Human Phenotype Ontology for systemic autoinflammatory diseases improves phenotype-driven disease-matching.xlsx

    No full text
    IntroductionAccurate and standardized phenotypic descriptions are essential in diagnosing rare diseases and discovering new diseases, and the Human Phenotype Ontology (HPO) system was developed to provide a rich collection of hierarchical phenotypic descriptions. However, although the HPO terms for inborn errors of immunity have been improved and curated, it has not been investigated whether this curation improves the diagnosis of systemic autoinflammatory disease (SAID) patients. Here, we aimed to study if improved HPO annotation for SAIDs enhanced SAID identification and to demonstrate the potential of phenotype-driven genome diagnostics using curated HPO terms for SAIDs.MethodsWe collected HPO terms from 98 genetically confirmed SAID patients across eight different European SAID expertise centers and used the LIRICAL (Likelihood Ratio Interpretation of Clinical Abnormalities) computational algorithm to estimate the effect of HPO curation on the prioritization of the correct SAID for each patient.ResultsOur results show that the percentage of correct diagnoses increased from 66% to 86% and that the number of diagnoses with the highest ranking increased from 38 to 45. In a further pilot study, curation also improved HPO-based whole-exome sequencing (WES) analysis, diagnosing 10/12 patients before and 12/12 after curation. In addition, the average number of candidate diseases that needed to be interpreted decreased from 35 to 2.DiscussionThis study demonstrates that curation of HPO terms can increase identification of the correct diagnosis, emphasizing the high potential of HPO-based genome diagnostics for SAIDs.</p

    Table_1_Curation and expansion of the Human Phenotype Ontology for systemic autoinflammatory diseases improves phenotype-driven disease-matching.xlsx

    No full text
    IntroductionAccurate and standardized phenotypic descriptions are essential in diagnosing rare diseases and discovering new diseases, and the Human Phenotype Ontology (HPO) system was developed to provide a rich collection of hierarchical phenotypic descriptions. However, although the HPO terms for inborn errors of immunity have been improved and curated, it has not been investigated whether this curation improves the diagnosis of systemic autoinflammatory disease (SAID) patients. Here, we aimed to study if improved HPO annotation for SAIDs enhanced SAID identification and to demonstrate the potential of phenotype-driven genome diagnostics using curated HPO terms for SAIDs.MethodsWe collected HPO terms from 98 genetically confirmed SAID patients across eight different European SAID expertise centers and used the LIRICAL (Likelihood Ratio Interpretation of Clinical Abnormalities) computational algorithm to estimate the effect of HPO curation on the prioritization of the correct SAID for each patient.ResultsOur results show that the percentage of correct diagnoses increased from 66% to 86% and that the number of diagnoses with the highest ranking increased from 38 to 45. In a further pilot study, curation also improved HPO-based whole-exome sequencing (WES) analysis, diagnosing 10/12 patients before and 12/12 after curation. In addition, the average number of candidate diseases that needed to be interpreted decreased from 35 to 2.DiscussionThis study demonstrates that curation of HPO terms can increase identification of the correct diagnosis, emphasizing the high potential of HPO-based genome diagnostics for SAIDs.</p

    DataSheet_1_Curation and expansion of the Human Phenotype Ontology for systemic autoinflammatory diseases improves phenotype-driven disease-matching.docx

    No full text
    IntroductionAccurate and standardized phenotypic descriptions are essential in diagnosing rare diseases and discovering new diseases, and the Human Phenotype Ontology (HPO) system was developed to provide a rich collection of hierarchical phenotypic descriptions. However, although the HPO terms for inborn errors of immunity have been improved and curated, it has not been investigated whether this curation improves the diagnosis of systemic autoinflammatory disease (SAID) patients. Here, we aimed to study if improved HPO annotation for SAIDs enhanced SAID identification and to demonstrate the potential of phenotype-driven genome diagnostics using curated HPO terms for SAIDs.MethodsWe collected HPO terms from 98 genetically confirmed SAID patients across eight different European SAID expertise centers and used the LIRICAL (Likelihood Ratio Interpretation of Clinical Abnormalities) computational algorithm to estimate the effect of HPO curation on the prioritization of the correct SAID for each patient.ResultsOur results show that the percentage of correct diagnoses increased from 66% to 86% and that the number of diagnoses with the highest ranking increased from 38 to 45. In a further pilot study, curation also improved HPO-based whole-exome sequencing (WES) analysis, diagnosing 10/12 patients before and 12/12 after curation. In addition, the average number of candidate diseases that needed to be interpreted decreased from 35 to 2.DiscussionThis study demonstrates that curation of HPO terms can increase identification of the correct diagnosis, emphasizing the high potential of HPO-based genome diagnostics for SAIDs.</p

    DataSheet_2_Curation and expansion of the Human Phenotype Ontology for systemic autoinflammatory diseases improves phenotype-driven disease-matching.docx

    No full text
    IntroductionAccurate and standardized phenotypic descriptions are essential in diagnosing rare diseases and discovering new diseases, and the Human Phenotype Ontology (HPO) system was developed to provide a rich collection of hierarchical phenotypic descriptions. However, although the HPO terms for inborn errors of immunity have been improved and curated, it has not been investigated whether this curation improves the diagnosis of systemic autoinflammatory disease (SAID) patients. Here, we aimed to study if improved HPO annotation for SAIDs enhanced SAID identification and to demonstrate the potential of phenotype-driven genome diagnostics using curated HPO terms for SAIDs.MethodsWe collected HPO terms from 98 genetically confirmed SAID patients across eight different European SAID expertise centers and used the LIRICAL (Likelihood Ratio Interpretation of Clinical Abnormalities) computational algorithm to estimate the effect of HPO curation on the prioritization of the correct SAID for each patient.ResultsOur results show that the percentage of correct diagnoses increased from 66% to 86% and that the number of diagnoses with the highest ranking increased from 38 to 45. In a further pilot study, curation also improved HPO-based whole-exome sequencing (WES) analysis, diagnosing 10/12 patients before and 12/12 after curation. In addition, the average number of candidate diseases that needed to be interpreted decreased from 35 to 2.DiscussionThis study demonstrates that curation of HPO terms can increase identification of the correct diagnosis, emphasizing the high potential of HPO-based genome diagnostics for SAIDs.</p
    corecore