7 research outputs found

    Fine tuning of the side-to-side tenorrhaphy: A biomechanical study assessing different side-to-side suture techniques in a porcine tendon model

    Get PDF
    Recent studies conclude that a new technique for tendon transfers, the side-to-side tenorrhaphy by Friden (FR) provides higher biomechanical stability than the established standard first described by Pulvertaft (PT). The aim of this study was to optimize side-to-side tenorrhaphies. We compared PT and FR tenorrhaphies as well as a potential improvement, termed Woven-Friden tenorrhaphy (WF), with regard to biomechanical stability. Our results demonstrate superior biomechanical stability and lower bulk of FR and, in particular, WF over PT tenorrhaphies. The WF and FR technnique therefore seem to be a notable alternative to the established standard tenorrhaphy as they display lower bulk and higher stability, permitting successful immediate active mobilization after surgery

    Wear of a total intervertebral disc prosthesis

    No full text
    In this study we characterized the wear behavior of a tribological system with material combinations of the total intervertebral disc prosthesis InDisc (Institute of Medical and Polymer Engineering) – consisting of two laser sintered titanium alloy plates with an elastomer inbetween. For the tests a translatory oscillation test bench was used which simulates the kinematic and the physiological environment of the lumbar spine. In the interface between the elastomer (Silopren LSR 2670) and the laser sintered titanium alloy (Ti6Al4V) abrasion cords out of silicone rubber with a maximal area of 500 × 700 μm2 were generated as well as individual particles with a size of 10 × 20 to 40 × 50 μm2. In the second prosthesis interface of Ti6Al4V and bone, bone particles with an area of 0.5 × 0.5 to 1 × 1 μm2 were detected. The wear particles and the amount of wear volume influence the biological response of a total intervertebral disc prosthesis in the body

    Development and Evaluation of a Cost-effective IMU System for Gait Analysis: Comparison with Vicon and VideoPose3D Algorithms

    No full text
    This study aimed to develop and evaluate a costeffective Inertial Measurement Unit (IMU) system for gait analysis, comparing its performance with the Vicon system and the VideoPose3D algorithm. The system comprises five calibrated sensors and a mobile app to measure lower body orientation during gait and stair climbing. Eight healthy participants were involved in the experiment, each performing ten repetitions to analyze hip and knee flexion angles. The IMU system demonstrated significantly lower mean square error than deep learning-based approaches and comparable results to the Vicon system, indicating its potential for clinical and research applications

    Finding the Optimal Surgical Incision Pattern—A Biomechanical Study

    No full text
    The closure of wounds and subsequent optimal wound healing is essential to any successful surgical intervention. Especially on parts of the body with limited possibilities for local reconstruction, optimal distribution of load is essential. The aim of the present study was therefore to examine three different incision patterns, conventional straight, Lazy-S and Zigzag, with regard to their biomechanical stability and mode of failure on a porcine skin model. Our results demonstrate the superior biomechanical stability of Lazy-S and Zigzag incision patterns with perpendicular suture placement. This holds true, in particular, for Zigzag incisions, which showed the highest values for all parameters assessed. Moreover, the observed superior stability of Lazy-S and Zigzag incision patterns was diminished when sutures were placed in tensile direction. The conventional straight incision represents the standard access for a large number of surgical procedures. However, we were able to demonstrate the superior biomechanical stability of alternative incision patterns, in particular the Zigzag incision. This is most likely caused by an improved distribution of tensile force across the wound due to the perpendicular placement of sutures. Moreover, this technique offers additional advantages, such as a better overview of the operated area as well as several cosmetic improvements. We therefore advocate that the surgeon should consider the use of a Zigzag incision over a conventional straight incision pattern

    Biomechanical Test Setup for the Investigation of Forehead Suture Techniques

    No full text
    Wound healing can be delayed if the biomechanical stability of the wound closure is inadequate. Therefore, it is necessary to investigate different suturing techniques for their biomechanical stability. In this study, suturing techniques suitable for the forehead area were investigated. For this application, a special test setup was developed to simulate the curvature of the forehead and the corresponding physiological configuration. The average forehead curvature is 62.24 ± 4.11 mm in radius. To simulate this curvature, the skin specimens are subjected to tensile stress over the spherical surface using a standard uniaxial testing machine. For the evaluation, an automated evaluation tool for MATLAB was also developed. Three different suturing techniques (Straight, Lazy-S, Zigzag) were investigated and tested for their biomechanical stability. Of the three suturing techniques, the Zigzag suture proved to be the most stable with the highest stiffness of 44.23 ± 8.18 % and the highest final failure of 32.60 ± 4.95 % (relative to the control sample without incision). The study has shown that the test setup can be used to investigate different forehead suture techniques

    Numerical evaluation of internal femur osteosynthesis based on a biomechanical model of the loading in the proximal equine hindlimb

    No full text
    Summary Femoral fractures are often considered lethal for adult horses because femur osteosynthesis is still a surgical challenge. For equine femur osteosynthesis, primary stability is essential, but the detailed physiological forces occurring in the hindlimb are largely unknown. The objective of this study was to create a numerical testing environment to evaluate equine femur osteosynthesis based on physiological conditions. The study was designed as a finite element analysis (FEA) of the femur using a musculoskeletal model of the loading situation in stance. Relevant forces were determined in the musculoskeletal model via optimization. The treatment of four different fracture types with an intramedullary nail was investigated in FEA with loading conditions derived from the model. The analyzed diaphyseal fracture types were a transverse (TR) fracture, two oblique fractures in different orientations (OB-ML: medial-lateral and OB-AP: anterior-posterior) and a ”gap” fracture (GAP) without contact between the fragments. For the native femur, the most relevant areas of increased stress were located distally to the femoral head and proximally to the caudal side of the condyles. For all fracture types, the highest stresses in the implant material were present in the fracture-adjacent screws. Maximum compressive (-348 MPa) and tensile stress (197 MPa) were found for the GAP fracture, but material strength was not exceeded. The mathematical model was able to predict a load distribution in the femur of the standing horse and was used to assess the performance of internal fixation devices via FEA. The analyzed intramedullary nail and screws showed sufficient stability for all fracture types

    Improving mandibular reconstruction by using topology optimization, patient specific design and additive manufacturing?-A biomechanical comparison against miniplates on human specimen.

    Get PDF
    In this study, topology optimized, patient specific osteosynthesis plates (TOPOS-implants) are evaluated for the mandibular reconstruction using fibula segments. These shape optimized implants are compared to a standard treatment with miniplates (thickness: 1.0 mm, titanium grade 4) in biomechanical testing using human cadaveric specimen. Mandible and fibula of 21 body donors were used. Geometrical models were created based on automated segmentation of CT-scans of all specimens. All reconstructions, including cutting guides for osteotomy as well as TOPOS-implants, were planned using a custom-made software tool. The TOPOS-implants were produced by electron beam melting (thickness: 1.0 mm, titanium grade 5). The fibula-reconstructed mandibles were tested in static and dynamic testing in a multi-axial test system, which can adapt to the donor anatomy and apply side-specific loads. Static testing was used to confirm mechanical similarity between the reconstruction groups. Force-controlled dynamic testing was performed with a sinusoidal loading between 60 and 240 N (reconstructed side: 30% reduction to consider resected muscles) at 5 Hz for up to 5 · 105 cycles. There was a significant difference between the groups for dynamic testing: All TOPOS-implants stayed intact during all cycles, while miniplate failure occurred after 26.4% of the planned loading (1.32 · 105 ± 1.46 · 105 cycles). Bone fracture occurred in both groups (miniplates: n = 3, TOPOS-implants: n = 2). A correlation between bone failure and cortical bone thickness in mandible angle as well as the number of bicortical screws used was demonstrated. For both groups no screw failure was detected. In conclusion, the topology optimized, patient specific implants showed superior fatigue properties compared to miniplates in mandibular reconstruction. Additionally, the patient specific shape comes with intrinsic guiding properties to support the reconstruction process during surgery. This demonstrates that the combination of additive manufacturing and topology optimization can be beneficial for future maxillofacial surgery
    corecore