16 research outputs found

    A Multidisciplinary Breast Cancer Brain Metastases Clinic: The University of North Carolina Experience

    Get PDF
    Breast cancer brain metastasis (BCBM) confers a poor prognosis and is unusual in requiring multidisciplinary care in the metastatic setting. The University of North Carolina at Chapel Hill (UNC-CH) has created a BCBM clinic to provide medical and radiation oncology, neurosurgical, and supportive services to this complex patient population. We describe organization and design of the clinic as well as characteristics, treatments, and outcomes of the patients seen in its first 3 years

    The prognostic contribution of clinical breast cancer subtype, age, and race among patients with breast cancer brain metastases

    Get PDF
    Brain metastases (BM) arising from Triple-negative breast cancer (TNBC) portend poor prognosis. TNBC is more common in premenopausal and African-American (AA) patients; both also confer poor prognosis. In a single institution cohort study, we sought to determine if inferior outcome of TN BCBM is more reflective of a higher-risk population or subtype itself

    B Cells and T Follicular Helper Cells Mediate Response to Checkpoint Inhibitors in High Mutation Burden Mouse Models of Breast Cancer

    Get PDF
    This study identifies mechanisms mediating responses to immune checkpoint inhibitors using mouse models of triple-negative breast cancer. By creating new mammary tumor models, we find that tumor mutation burden and specific immune cells are associated with response. Further, we developed a rich resource of single-cell RNA-seq and bulk mRNA-seq data of immunotherapy-treated and non-treated tumors from sensitive and resistant murine models. Using this, we uncover that immune checkpoint therapy induces T follicular helper cell activation of B cells to facilitate the anti-tumor response in these models. We also show that B cell activation of T cells and the generation of antibody are key to immunotherapy response and propose a new biomarker for immune checkpoint therapy. In total, this work presents resources of new preclinical models of breast cancer with large mRNA-seq and single-cell RNA-seq datasets annotated for sensitivity to therapy and uncovers new components of response to immune checkpoint inhibitors

    Examination and prognostic implications of the unique microenvironment of breast cancer brain metastases

    Get PDF
    Purpose: Brain metastases (BM) are a complication of advanced breast cancer (BC). Histology of melanoma BM offers prognostic value; however, understanding the microenvironment of breast cancer brain metastases (BCBM) is less characterized. This study reports on four histological biomarkers, gliosis, immune infiltrate, hemorrhage, necrosis, and their prognostic significance in BCBM. Methods: A biobank of 203 human tissues from patients who underwent craniotomy for BCBM was created across four academic institutions. Degree of gliosis, immune infiltrate, hemorrhage, and necrosis were identified and scored via representative H&E stain (0–3+). Overall survival (OS) was estimated using the Kaplan–Meier method. Cox proportional hazards regression evaluated prognostic value of the biomarkers in the context of standard clinical characteristics. Results: BCBM subtype (available for n = 158) was 36% Her2+, 26% hormone receptor (HR)+/Her2− 38% HR−/Her2− (triple negative, TN). Gliosis was observed in 82% (116/141) of BCBM, with immune infiltrate 44% (90/201), hemorrhage 82% (166/141), and necrosis 87% (176/201). Necrosis was significantly higher in TNBC (p < 0.01). Presence of gliosis, immune infiltrate, and hemorrhage correlated with improved OS (p = 0.03, p = 0.03, p = 0.1), while necrosis correlated with inferior OS (p = 0.01). Improved OS was associated with gliosis in TN (p = 0.02), and immune infiltrate (p = 0.001) and hemorrhage (p = 0.07) in HER2+. In a multivariable model for OS, incorporating these biomarkers with traditional clinical variables improved the model fit (p < 0.001). Conclusion: Gliosis confers superior prognosis in TNBC BM; immune infiltrate and hemorrhage correlate with superior prognosis in HER2+ BCBM. Understanding the metastatic microenvironment of BCBM refines prognostic considerations and may unveil novel therapeutic strategies

    Phosphatidylinositol 3-kinase pathway activation in breast cancer brain metastases

    Get PDF
    Activation status of the phosphatidylinositol 3-kinase (PI3K) pathway in breast cancer brain metastases (BCBMs) is largely unknown. We examined expression of phospho(p)-AKT, p-S6, and phosphatase and tensin homologue (PTEN) in BCBMs and their implications for overall survival (OS) and survival after BCBMs. Secondary analyses included PI3K pathway activation status and associations with time to distant recurrence (TTDR) and time to BCBMs. Similar analyses were also conducted among the subset of patients with triple-negative BCBMs. METHODS: p-AKT, p-S6, and PTEN expression was assessed with immunohistochemistry in 52 BCBMs and 12 matched primary BCs. Subtypes were defined as hormone receptor (HR)+/HER2-, HER2+, and triple-negative (TNBC). Survival analyses were performed by using a Cox model, and survival curves were estimated with the Kaplan-Meier method. RESULTS: Expression of p-AKT and p-S6 and lack of PTEN (PTEN-) was observed in 75%, 69%, and 25% of BCBMs. Concordance between primary BCs and matched BCBMs was 67% for p-AKT, 58% for p-S6, and 83% for PTEN. PTEN- was more common in TNBC compared with HR+/HER2- and HER2+. Expression of p-AKT, p-S6, and PTEN- was not associated with OS or survival after BCBMs (all, P > 0.06). Interestingly, among all patients, PTEN- correlated with shorter time to distant and brain recurrence. Among patients with TNBC, PTEN- in BCBMs was associated with poorer overall survival. CONCLUSIONS: The PI3K pathway is active in most BCBMs regardless of subtype. Inhibition of this pathway represents a promising therapeutic strategy for patients with BCBMs, a group of patients with poor prognosis and limited systemic therapeutic options. Although expression of the PI3K pathway did not correlate with OS and survival after BCBM, PTEN- association with time to recurrence and OS (among patients with TNBC) is worthy of further study

    Hypnozoite depletion in successive Plasmodium vivax relapses

    Get PDF
    Genotyping Plasmodium vivax relapses can provide insights into hypnozoite biology. We performed targeted amplicon sequencing of 127 relapses occurring in Indonesian soldiers returning to malaria-free Java after yearlong deployment in malarious Eastern Indonesia. Hepatic carriage of multiple hypnozoite clones was evident in three-quarters of soldiers with two successive relapses, yet the majority of relapse episodes only displayed one clonal population. The number of clones detected in relapse episodes decreased over time and through successive relapses, especially in individuals who received hypnozoiticidal therapy. Interrogating the multiplicity of infection in this P. vivax relapse cohort reveals evidence of independent activation and slow depletion of hypnozoites over many months by multiple possible mechanisms, including parasite senescence and host immunity

    Pfhrp2-deleted Plasmodium falciparum parasites in the Democratic Republic of the Congo: a national cross-sectional survey

    Get PDF
    Background. Rapid diagnostic tests (RDTs) account for more than two-thirds of malaria diagnoses in Africa. Deletions of the Plasmodium falciparum hrp2 (pfhrp2) gene cause false-negative RDT results and have never been investigated on a national level. Spread of pfhrp2-deleted P. falciparum mutants, resistant to detection by HRP2-based RDTs, would represent a serious threat to malaria elimination efforts. Methods. Using a nationally representative cross-sectional study of 7,137 children under five years of age from the Democratic Republic of Congo (DRC), we tested 783 subjects with RDT-/PCR+ results using PCR assays to detect and confirm deletions of the pfhrp2 gene. Spatial and population genetic analyses were employed to examine the distribution and evolution of these parasites. Results. We identified 149 pfhrp2-deleted parasites, representing 6.4% of all P. falciparum infections country-wide (95% confidence interval 5.1–8.0%). Bayesian spatial analyses identified statistically significant clustering of pfhrp2 deletions near Kinshasa and Kivu. Population genetic analysis revealed significant genetic differentiation between wild-type and pfhrp2-deleted parasite populations (GST = .046, p ≤ .00001). Conclusions. Pfhrp2-deleted P. falciparum is a common cause of RDT-/PCR+ malaria among asymptomatic children in the DRC and appears to be clustered within select communities. Surveillance for these deletions is needed, and alternatives to HRP2-specific RDTs may be necessary
    corecore