12,711 research outputs found

    Pairwise Well-Formed Modes and Transformations

    Full text link
    One of the most significant attitudinal shifts in the history of music occurred in the Renaissance, when an emerging triadic consciousness moved musicians towards a new scalar formation that placed major thirds on a par with perfect fifths. In this paper we revisit the confrontation between the two idealized scalar and modal conceptions, that of the ancient and medieval world and that of the early modern world, associated especially with Zarlino. We do this at an abstract level, in the language of algebraic combinatorics on words. In scale theory the juxtaposition is between well-formed and pairwise well-formed scales and modes, expressed in terms of Christoffel words or standard words and their conjugates, and the special Sturmian morphisms that generate them. Pairwise well-formed scales are encoded by words over a three-letter alphabet, and in our generalization we introduce special positive automorphisms of F3F3, the free group over three letters.Comment: 12 pages, 3 figures, paper presented at the MCM2017 at UNAM in Mexico City on June 27, 2017, keywords: pairwise well-formed scales and modes, well-formed scales and modes, well-formed words, Christoffel words, standard words, central words, algebraic combinatorics on words, special Sturmian morphism

    Measuring the muon's anomalous magnetic moment to 0.14 ppm

    Full text link
    The anomalous magnetic moment (g-2) of the muon was measured with a precision of 0.54 ppm in Experiment 821 at Brookhaven National Laboratory. A difference of 3.2 standard deviations between this experimental value and the prediction of the Standard Model has persisted since 2004; in spite of considerable experimental and theoretical effort, there is no consistent explanation for this difference. This comparison hints at physics beyond the Standard Model, but it also imposes strong constraints on those possibilities, which include supersymmetry and extra dimensions. The collaboration is preparing to relocate the experiment to Fermilab to continue towards a proposed precision of 0.14 ppm. This will require 20 times more recorded decays than in the previous measurement, with corresponding improvements in the systematic uncertainties. We describe the theoretical developments and the experimental upgrades that provide a compelling motivation for the new measurement.Comment: 5 pages, 1 figure, presented at International Nuclear Physics Conference 2010 (INPC 2010

    Twisted K-theory and K-theory of bundle gerbes

    Get PDF
    In this note we introduce the notion of bundle gerbe K-theory and investigate the relation to twisted K-theory. We provide some examples. Possible applications of bundle gerbe K-theory to the classification of D-brane charges in non-trivial backgrounds are discussed.Comment: 29 pages, corrected typos, added references, included new section on twisted Chern character in non-torsion cas

    A 100 pc Elliptical and Twisted Ring of Cold and Dense Molecular Clouds Revealed by Herschel Around the Galactic Center

    Get PDF
    Thermal images of cold dust in the Central Molecular Zone of the Milky Way, obtained with the far-infrared cameras on board the Herschel satellite, reveal a ~3 × 10^7 M_☉ ring of dense and cold clouds orbiting the Galactic center. Using a simple toy model, an elliptical shape having semi-major axes of 100 and 60 pc is deduced. The major axis of this 100 pc ring is inclined by about 40° with respect to the plane of the sky and is oriented perpendicular to the major axes of the Galactic Bar. The 100 pc ring appears to trace the system of stable x_2 orbits predicted for the barred Galactic potential. Sgr A⋆ is displaced with respect to the geometrical center of symmetry of the ring. The ring is twisted and its morphology suggests a flattening ratio of 2 for the Galactic potential, which is in good agreement with the bulge flattening ratio derived from the 2MASS data

    Thermal Effects on the Magnetic Field Dependence of Spin Transfer Induced Magnetization Reversal

    Full text link
    We have developed a self-aligned, high-yield process to fabricate CPP (current perpendicular to the plane) magnetic sensors of sub 100 nm dimensions. A pinned synthetic antiferromagnet (SAF) is used as the reference layer which minimizes dipole coupling to the free layer and field induced rotation of the reference layer. We find that the critical currents for spin transfer induced magnetization reversal of the free layer vary dramatically with relatively small changes the in-plane magnetic field, in contrast to theoretical predictions based on stability analysis of the Gilbert equations of magnetization dynamics including Slonczewski-type spin-torque terms. The discrepancy is believed due to thermal fluctuations over the time scale of the measurements. Once thermal fluctuations are taken into account, we find good quantitative agreement between our experimental results and numerical simulations.Comment: 14 pages, 4 figures, Submitted to Appl. Phys. Lett., Comparison of some of these results with a model described by N. Smith in cond-mat/040648

    Effects of rf Current on Spin Transfer Torque Induced Dynamics

    Full text link
    The impact of radiofrequency (rf) currents on the direct current (dc) driven switching dynamics in current-perpendicular-to-plane nanoscale spin valves is demonstrated. The rf currents dramatically alter the dc driven free layer magnetization reversal dynamics as well as the dc switching level. This occurs when the frequency of the rf current is tuned to a frequency range around the dc driven magnetization precession frequencies. For these frequencies, interactions between the dc driven precession and the injected rf induce frequency locking and frequency pulling effects that lead to a measurable dependence of the critical switching current on the frequency of the injected rf. Based on macrospin simulations, including dc as well as rf spin torque currents, we explain the origin of the observed effects.Comment: 5 pages, 4 figure

    L^2 torsion without the determinant class condition and extended L^2 cohomology

    Full text link
    We associate determinant lines to objects of the extended abelian category built out of a von Neumann category with a trace. Using this we suggest constructions of the combinatorial and the analytic L^2 torsions which, unlike the work of the previous authors, requires no additional assumptions; in particular we do not impose the determinant class condition. The resulting torsions are elements of the determinant line of the extended L^2 cohomology. Under the determinant class assumption the L^2 torsions of this paper specialize to the invariants studied in our previous work. Applying a recent theorem of D. Burghelea, L. Friedlander and T. Kappeler we obtain a Cheeger - Muller type theorem stating the equality between the combinatorial and the analytic L^2 torsions.Comment: 39 page
    • 

    corecore