336 research outputs found

    Utilization of Genetic Counseling after Direct‐to‐Consumer Genetic Testing: Findings from the Impact of Personal Genomics (PGen) Study

    Full text link
    Direct‐to‐consumer personal genomic testing (DTC‐PGT) results lead some individuals to seek genetic counseling (GC), but little is known about these consumers and why they seek GC services. We analyzed survey data pre‐ and post‐PGT from 1026 23andMe and Pathway Genomics customers. Participants were mostly white (91%), female (60%), and of high socioeconomic status (80% college educated, 43% household income of ≥$100,000). After receiving PGT results, 43 participants (4%) made or planned to schedule an appointment with a genetic counselor; 390 (38%) would have used in‐person GC had it been available. Compared to non‐seekers, GC seekers were younger (mean age of 38 vs 46 years), more frequently had children <18 (26% vs 16%), and were more likely to report previous GC (37% vs 7%) and genetic testing (30% vs 15%). In logistic regression analysis, seeking GC was associated with previous GC use (OR = 6.5, CI = 3.1–13.8), feeling motivated to pursue DTC‐PGT for health reasons (OR = 4.3, CI = 1.8–10.1), fair or poor self‐reported health (OR = 3.1, CI = 1.1–8.3), and self‐reported uncertainty about the results (OR = 1.8, CI = 1.1–2.7). These findings can help GC providers anticipate who might seek GC services and plan for clinical discussions of DTC‐PGT results.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/146977/1/jgc41270.pd

    Fish-Kills in the Urban Stretch of the Tiber River After a Flash-Storm: Investigative Monitoring with Effect-Based Methods, Targeted Chemical Analyses, and Fish Assemblage Examinations

    Get PDF
    In 2020 and 2021, fish-kills events occurred in the Tiber river in the city of Rome. These events, which caused the death of thousands of fish of different species (e.g., Barbus spp., Cyprinus carpio, Squalius spp.), were preceded the days before by severe flash-storms. Heavy rains in urban areas in recent years are linked to climate change and fish-kills events. With the aim to investigate the causes of these events, effect-based methods (EBMs) and targeted chemical analyses have been performed on a specific site of river Tiber in the center of the city. Additionally, examination and classification of the floating dead fishes have been performed. The chemical analysis performed on several groups of contaminants showed the presence of some pharmaceuticals, insecticides, and PFAS at up to ng/L. Results with the Fish Embryo Toxicity (FET) test confirmed lethal and sub-lethal effects, while acute effects were not detected with the Daphnia magna acute test. The fish-kills events probably can be generated by several factors as a consequence of an increasing human anthropization of the area with the contribution of different stressors together with chemical releases and emissions. This study shows that in multiple stressor scenarios characterized by heavy rainfall, droughts, and strong anthropogenic pressures, the application of EBMs, chemical analysis, and fish assemblage examinations can represent a useful support in the investigation of the causes of extensive fish-kills events

    Complex patterns of collective escape in starling flocks under predation

    Get PDF
    Collective behaviour of animals has been a main focus of recent research, yet few empirical studies deal with this issue in the context of predation, a major driver of social complexity in many animal species. When starling (Sturnus vulgaris) flocks are under attack by a raptor, such as a peregrine falcon (Falco peregrinus), they show a great diversity of patterns of collective escape. The corresponding structural complexity concerns rapid variation in density and shape of the flock over time. Here, we present a first step towards unravelling this complexity. We apply a time series analysis to video footage of 182 sequences of hunting by falcons on flocks of thousands of starlings close to two urban roosts during winter. We distinguish several types of collective escape by determining the position and movement of individuals relative to each other (which determines darkness and shape of the flock over time) as well as relative to the predator, namely flash expansion', blackening', wave event', vacuole', cordon' and split'. We show that the specific type of collective escape depends on the collective pattern that precedes it and on the level of threat posed by the raptor. A wave event was most likely to occur when the predator attacked at medium speed. Flash expansion occurred more frequently when the predator approached the flock at faster rather than slower speed and attacked from above rather than from the side or below. Flash expansion was often followed by split, but in many cases, the flock showed resilience by remaining intact. During a hunting sequence, the frequencies of different patterns of collective escape increased when the frequency of attack by the raptor was higher. Despite their complexity, we show that patterns of collective escape depend on the predatory threat, which resembles findings in fish.Significance statementPatterns of collective escape in flocks of starlings have always intrigued laymen and scientists. A detailed analysis of their complex dynamics has been lacking so far, and is the focus of our present study: we analysed video footage of hunting by falcons on flocks of thousands of starlings and show how patterns of collective escape (namely flash expansion, blackening, wave event, vacuole, cordon and split) depend on the preceding pattern and on details of attack. A higher frequency of attack during a hunting sequence resulted in a higher frequency of collective escape events. Flash expansion happened most often when the predator attacks at greater speed. A wave event was most likely when the raptor attacks at medium (rather than high or low) speed. These results provide a first quantitative approach to social complexity in collective avoidance of a predator

    Design, methods, and participant characteristics of the Impact of Personal Genomics (PGen) Study, a prospective cohort study of direct-to-consumer personal genomic testing customers

    Get PDF
    Designed in collaboration with 23andMe and Pathway Genomics, the Impact of Personal Genomics (PGen) Study serves as a model for academic-industry partnership and provides a longitudinal dataset for studying psychosocial, behavioral, and health outcomes related to direct-to-consumer personal genomic testing (PGT). Web-based surveys administered at three time points, and linked to individual-level PGT results, provide data on 1,464 PGT customers, of which 71% completed each follow-up survey and 64% completed all three surveys. The cohort includes 15.7% individuals of non-white ethnicity, and encompasses a range of income, education, and health levels. Over 90% of participants agreed to re-contact for future research. Electronic supplementary material The online version of this article (doi:10.1186/s13073-014-0096-0) contains supplementary material, which is available to authorized users

    Toxicity and genotoxicity of wastewater from gasoline stations

    Get PDF
    The toxicity and genotoxicity of wastewater from eight gasoline stations in Brasília, Brazil's capital city, was studied by assessing chromosomal aberrations, chromosomal malsegregation and the mitotic index in Alliumcepa root cells, and the occurrence of micronucleus and nuclear abnormalities in peripheral erythrocytes of tilapia fish (Oreochromis niloticus). The content of gasoline station effluents was also analyzed based on several physico-chemical parameters. None of the wastewater samples was genotoxic to A. cepa root cells, although cell proliferation was significantly inhibited, especially at the highest concentrations. Likewise, no micronuclei were observed in O. niloticus peripheral erythrocytes, even after exposure to high concentrations, but there was an increase in the number of nuclear abnormalities and fish mortality. These results show that although the effluent from gasoline stations is processed by an oil/water separation system before being discharged into the main sewage system, the wastewater still contains toxic compounds

    Cofactor tail length modulates catalysis of bacterial F420-dependent oxidoreductases

    Get PDF
    F420 is a microbial cofactor that mediates a wide range of physiologically important and industrially relevant redox reactions, including in methanogenesis and tetracycline biosynthesis. This deazaflavin comprises a redox-active isoalloxazine headgroup conjugated to a lactyloligoglutamyl tail. Here we studied the catalytic significance of the oligoglutamate chain, which differs in length between bacteria and archaea. We purified short-chain F420 (two glutamates) from a methanogen isolate and long-chain F420 (five to eight glutamates) from a recombinant mycobacterium, confirming their different chain lengths by HPLC and LC/MS analysis. F420 purified from both sources was catalytically compatible with purified enzymes from the three major bacterial families of F420-dependent oxidoreductases. However, long-chain F420 bound to these enzymes with a six- to ten-fold higher affinity than short-chain F420. The cofactor side chain also significantly modulated the kinetics of the enzymes, with long-chain F420 increasing the substrate affinity (lower Km) but reducing the turnover rate (lower kcat) of the enzymes. Molecular dynamics simulations and comparative structural analysis suggest that the oligoglutamate chain of F420 makes dynamic electrostatic interactions with conserved surface residues of the oxidoreductases while the headgroup binds the catalytic site. In conjunction with the kinetic data, this suggests that electrostatic interactions made by the oligoglutamate tail result in higher-affinity, lower-turnover catalysis. Physiologically, we propose that bacteria have selected for long-chain F420 to better control cellular redox reactions despite tradeoffs in catalytic rate. Conversely, this suggests that industrial use of shorter-length F420 will greatly increase the rates of bioremediation and biocatalysis processes relying on purified F420-dependent oxidoreductasesThis work was supported by a CSIRO Office of the Chief Executive Postdoctoral Fellowship and an ARC DECRA Fellowship (DE170100310) awarded to CG, a Marsden Grant (GNS-035) awarded to CC, and Australian Research Council grants (DE120102673, DP130102144) awarded to CJ

    Sexual differences in exploration behavior in Xenopus tropicalis?

    Get PDF
    The two sexes of a species often differ in many ways. How sexes differ depends on the selective context, with females often investing more in reproductive output and males in territory defense and resource acquisition. This also implies that behavioral strategies may differ between the two sexes, allowing them to optimize their fitness in a given ecological context. Here, we investigated whether males and females differ in their exploration behavior in an aquatic frog (Xenopus tropicalis). Moreover, we explored whether females show different behavioral strategies in the exploration of a novel environment as has been demonstrated previously for males of the same species. Our results show significant sex differences, with males exploring their environment more than females. Yet, similar to males, female exploratory behavior varied significantly among individuals and broadly fell into three categories: shy, intermediate and bold. Moreover, like in males, behavioral strategies are decoupled from morphology and performance. Our results suggest that females are more sedentary than males, with males engaging in greater risk taking by exploring novel environments more. Male and female behaviors could, however, be classified into similar groups, with some individuals being bolder than others and displaying more exploration behavior. The decoupling of morphology and performance from behavior appears to be a general feature in the species and may allow selection to act on both types of traits independently

    Transcriptomic analysis of Clostridium thermocellum ATCC 27405 cellulose fermentation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The ability of C<it>lostridium thermocellum </it>ATCC 27405 wild-type strain to hydrolyze cellulose and ferment the degradation products directly to ethanol and other metabolic byproducts makes it an attractive candidate for consolidated bioprocessing of cellulosic biomass to biofuels. In this study, whole-genome microarrays were used to investigate the expression of <it>C. thermocellum </it>mRNA during growth on crystalline cellulose in controlled replicate batch fermentations.</p> <p>Results</p> <p>A time-series analysis of gene expression revealed changes in transcript levels of ~40% of genes (~1300 out of 3198 ORFs encoded in the genome) during transition from early-exponential to late-stationary phase. K-means clustering of genes with statistically significant changes in transcript levels identified six distinct clusters of temporal expression. Broadly, genes involved in energy production, translation, glycolysis and amino acid, nucleotide and coenzyme metabolism displayed a decreasing trend in gene expression as cells entered stationary phase. In comparison, genes involved in cell structure and motility, chemotaxis, signal transduction and transcription showed an increasing trend in gene expression. Hierarchical clustering of cellulosome-related genes highlighted temporal changes in composition of this multi-enzyme complex during batch growth on crystalline cellulose, with increased expression of several genes encoding hydrolytic enzymes involved in degradation of non-cellulosic substrates in stationary phase.</p> <p>Conclusions</p> <p>Overall, the results suggest that under low substrate availability, growth slows due to decreased metabolic potential and <it>C. thermocellum </it>alters its gene expression to (i) modulate the composition of cellulosomes that are released into the environment with an increased proportion of enzymes than can efficiently degrade plant polysaccharides other than cellulose, (ii) enhance signal transduction and chemotaxis mechanisms perhaps to sense the oligosaccharide hydrolysis products, and nutrient gradients generated through the action of cell-free cellulosomes and, (iii) increase cellular motility for potentially orienting the cells' movement towards positive environmental signals leading to nutrient sources. Such a coordinated cellular strategy would increase its chances of survival in natural ecosystems where feast and famine conditions are frequently encountered.</p
    corecore