257 research outputs found
Rotating nonuniform black string solutions
We explore via linearized perturbation theory the Gregory-Laflamme
instability of rotating black strings with equal magnitude angular momenta. Our
results indicate that the Gregory-Laflamme instability persists up to
extremality for all even dimensions between six and fourteen. We construct
rotating nonuniform black strings with two equal magnitude angular momenta in
six dimensions. We see a first indication for the occurrence of a topology
changing transition, associated with such rotating nonuniform black strings.
Charged nonuniform black string configurations in heterotic string theory are
also constructed by employing a solution generation technique.Comment: 36 pages, 10 figures, final versio
Drinking water contaminants: toxicity of halogenated polycyclic aromatic hydrocarbons
Food may be contaminated with polycyclic aromatic hydrocarbons (PAHs) in the process of smoking or heating. These contaminants or their derivatives can also be present in drinking water when raw water contacts with discharges of untreated industrial/waste water effluents, forest fires or by solubilisation of organic material from contaminated soils. A few studies have shown that water disinfection can lead to halogenated derivatives of PAHs (HPAHs) as chlorinated and brominated derivatives, and there are evidences that these compounds may have greater mutagenicity than the parent PAHs.
In this study the cytotoxic and genotoxic effects of chlorinated/brominated derivatives of pyrene (Pyr) and benzo[a]anthracene (BaA), 1-ClPyr, 1-BrPyr and 7-ClBaA, which can be formed as water disinfection by-products, were studied in HepG2 cells to assess their potential hazard to human health.
The formation of 1-ClPyr, 1-BrPyr and 7-ClBaA under aqueous disinfection conditions in waters contaminated with Pyr and BaA, was confirmed with an optimized gas chromatography method. Cells exposed (24h) to several concentrations of BaA and 7-ClBaA (1 to 200μM) displayed a dose-related and significant increase of cytotoxicity (neutral red assay) with IC50 values of 3.37 and 12.63µM respectively. For Pyr, 1-ClPyr and 1-BrPyr (10 to 200μM), a lower but significant dose-related cytotoxicity was observed. At non-cytotoxic concentrations (10 and 15µM), 7-ClBaA was able to induce a significantly higher level of oxidative DNA damage in HepG2 cells than its parent compound, as assessed by the FPG-modified comet assay. Under these conditions neither Pyr nor its derivatives were genotoxic.
In conclusion, the disinfection process may give rise to genotoxic HPAHs with potential impact on human health and it should be performed in raw waters with minimal content of total organic carbon. In real conditions, humans may be exposed to a mixture of these organic compounds and thus their combined toxic effects should be further evaluated
Black hole collision with a scalar particle in four, five and seven dimensional anti-de Sitter spacetimes: ringing and radiation
In this work we compute the spectra, waveforms and total scalar energy
radiated during the radial infall of a small test particle coupled to a scalar
field into a -dimensional Schwarzschild-anti-de Sitter black hole. We focus
on and 7, extending the analysis we have done for . For small
black holes, the spectra peaks strongly at a frequency , which
is the lowest pure anti-de Sitter (AdS) mode. The waveform vanishes
exponentially as , and this exponential decay is governed
entirely by the lowest quasinormal frequency. This collision process is
interesting from the point of view of the dynamics itself in relation to the
possibility of manufacturing black holes at LHC within the brane world
scenario, and from the point of view of the AdS/CFT conjecture, since the
scalar field can represent the string theory dilaton, and 4, 5, 7 are
dimensions of interest for the AdS/CFT correspondence.Comment: 16 pages, 13 figures. Published versio
Perturbative Calculation of Quasinormal Modes of --Dimensional Black Holes
We study analytically quasinormal modes in a wide variety of black hole
spacetimes, including --dimensional asymptotically flat spacetimes and
non-asymptotically flat spacetimes (particular attention has been paid to the
four dimensional case). We extend the analytical calculation to include
first-order corrections to analytical expressions for quasinormal mode
frequencies by making use of a monodromy technique. All possible type
perturbations are included in this paper. The calculation performed in this
paper show that systematic expansions for uncharged black holes include
different corrections with the ones for charged black holes. This difference
makes them have a different --dependence relation in the first-order
correction formulae. The method applied above in calculating the first-order
corrections of quasinormal mode frequencies seems to be unavailable for black
holes with small charge. This result supports the Neitzke's prediction. On what
concerns quantum gravity we confirm the view that the in
Schwarzschild seems to be nothing but some numerical coincidences.Comment: 49 pages, 5 figure
Higher Derivative Corrections to Locally Black Brane Metrics
In this paper we generalize the construction of locally boosted black brane
space time to higher derivative gravities. We consider the Gauss-Bonnet term
(with coefficient ) as a toy example. We find the solution to the
corrected Einstein equations to first order in the boundary
derivative expansion. This allows us to find the corrections to the
boundary stress tensor in the presence of the Gauss-Bonnet term in the bulk
action. We therefore obtain the ratio of shear viscosity to entropy which
agrees with other methods of computation in the literature.Comment: 0+17 page
Formation of emerging disinfection byproducts in water and evaluation of potential genotoxic effects: the case of chlorinated polycyclic aromatic hydrocarbons
Work performed by Departamento de Genética, Instituto Nacional de Saúde Dr. Ricardo Jorge (INSA); Centro de Química Estrutural, Instituto Superior Técnico, Technical University of Lisbon; Departamento de Saúde Ambiental, INSADisinfection byproducts (DBPs) are formed when disinfectants used in water treatment plants (WTPs) react with natural (or anthropogenic) organic matter present in the source water. Many studies have addressed health risks posed by a life-time exposure to DBPs through chlorinated drinking water or through dermal or inhalation exposure routes. Experimental studies have revealed genotoxic and carcinogenic effects of some DBPs and epidemiological studies evidenced potential associations between chlorinated drinking water and bladder or colorectal cancer. In addition, a possible link between chlorinated drinking water and reproductive/developmental effects has been hypothesized.
Many DBPs have been identified in treated water, which justifies the growing concern about the potential health effects of emerging unregulated DBPs, some of which appear to be more genotoxic, in some assays, than the regulated DBPs. Polycyclic aromatic hydrocarbons (PAHs) are among the most persistent contaminants detected in environmental samples such as river sediments and tap water. Water chlorination can lead to the formation of chlorinated derivatives of PAHs (Cl-PAHs) and the few available toxicological studies have shown that Cl-PAHs possess greater mutagenicity than the corresponding parent PAHs.
The present study had two main objectives: 1) identification of the major chlorinated derivatives of benzo[a]pyrene (BaP) and fluoranthene (Fluo) formed as chlorination by-products and 2) evaluation of their potential hazard to humans, through the characterization of their potential genotoxic effects in a human cell line. To synthesize chlorinated standards of PAHs, a newly two phase (water/n-hexane) method was developed for BaP and Fluo. 6-Cl-BaP was obtained as the major chlorination product of BaP, and 3-Cl-Fluo and 1,3-Cl2-Fluo of Fluo. The formation of these BaP and Fluo chlorinated derivatives was also observed under WTPs chlorination conditions after at 0.5 until 24 h of exposure. The effects of equimolar concentrations of 6-Cl-BaP vs. BaP and of 3-Cl-Fluo/1,3-Cl2-Fluo vs. Fluo on cell viability and DNA integrity were assessed by the neutral red uptake (NR) and the comet assay, respectively. Exposure of HepG2 cells to a dose-range of 6-Cl-BaP and BaP showed that both compounds are cytotoxic above 50 µM and that, at the equimolar doses of 100 and 125 µM, 6-Cl-BaP is able to induce a significantly higher level of DNA damage than BaP. On the other hand, no changes of cell viability were observed after exposure to several concentrations of Fluo and its derivatives. Likewise, none of the compounds was able to significantly induce DNA damage.
In conclusion, the present data confirmed that chlorinated derivatives of BaP and Fluo are formed during WTPs chlorination procedures and allowed the identification of their major chlorinated derivatives that should be further analysed in drinking water. On the other hand, the results from the comet assay evidenced a higher DNA damaging effect of Cl-BaP comparatively to its parent compound, suggestive of a more potent genotoxic effect. In spite of the negative results found for Fluo and its chorinated products, further genotoxicity studies are still needed to allow a definite conclusion. Although health risks of DBPs are small compared to health risks of waterborne diseases, the identification of hazardous Cl-PAHs in water emphasizes the need of development of new and safer water disinfection methods
Cement nanotubes: on chemical gardens and cement
© 2016 Springer Science+Business Media New York“Do cement nanotubes exist?” is a question that has recently been asked. The answer is yes, they do exist. The evidence is in the literature, in tens of papers showing in detail chemical garden-type tubes in cement from the nanoscale upwards that were published in the 1970s and 1980s. Here, we present a nano-review of the literature
Null Deformed Domain Wall
We study null 1/4 BPS deformations of flat domain wall solutions (NDDW) in
N=2, d=5 gauged supergravity with hypermultiplets and vector multiplets
coupled. These are uncharged time-dependent configurations and contain as
special case, 1/2 supersymmetric flat domain walls (DW), as well as 1/2 BPS
null solutions of the ungauged supergravity. Combining our analysis with the
classification method initiated by Gauntlett et al., we prove that all the
possible deformations of the DW have origin in the hypermultiplet sector or/and
are null. Here, we classify all the null deformations: we show that they
naturally organize themselves into "gauging" (v-deformation) and "non gauging"
(u-deformation). They have different properties: only in presence of
v-deformation is the solution supported by a time-dependent scalar potential.
Furthermore we show that the number of possible deformations equals the number
of matter multiplets coupled. We discuss the general procedure for constructing
explicit solutions, stressing the crucial role taken by the integrability
conditions of the scalars as spacetime functions. Two analytical solutions are
presented. Finally, we comment on the holographic applications of the NDDW, in
relation to the recently proposed time-dependent AdS/CFT.Comment: 38 pages; minor changes, references added; text revised, minor
changes, final version published in JHE
On the Thermodynamic Geometry of BTZ Black Holes
We investigate the Ruppeiner geometry of the thermodynamic state space of a
general class of BTZ black holes. It is shown that the thermodynamic geometry
is flat for both the rotating BTZ and the BTZ Chern Simons black holes in the
canonical ensemble. We further investigate the inclusion of thermal
fluctuations to the canonical entropy of the BTZ Chern Simons black holes and
show that the leading logartithmic correction due to Carlip is reproduced. We
establish that the inclusion of thermal fluctuations induces a non zero scalar
curvature to the thermodynamic geometry.Comment: 1+17 pages, LaTeX, 4 eps figure
Formation of emerging disinfection byproducts in water and evaluation of potential genotoxic effects: the case of halogenated polycyclic aromatic hydrocarbons
Disinfection byproducts (DBPs) are formed when disinfectants used in water treatment plants (WTPs) react with natural (or anthropogenic) organic matter present in the source water. Many studies have addressed health risks posed by a life-time exposure to DBPs through chlorinated drinking water or through dermal or inhalation exposure routes. Experimental studies have revealed genotoxic and carcinogenic effects of some DBPs and epidemiological studies evidenced potential associations between chlorinated drinking water and bladder or colorectal cancer. In addition, a possible link between chlorinated drinking water and reproductive/developmental effects has been hypothesized.
Many DBPs have been identified in chlorinated water, which justifies the growing concern about the potential health effects of emerging unregulated DBPs, some of which appear to be more genotoxic, in some assays, than the regulated DBPs. Polycyclic aromatic hydrocarbons (PAHs) are among the most persistent contaminants detected in environmental samples such as river sediments and tap water. A few studies have already proven that water disinfection can lead to the formation of halogenated derivatives of PAHs, such as chlorinated (Cl-PAHs) and brominated PAHs (Br-PAHs). The available toxicological studies have shown that these compounds possess, in general, greater mutagenicity than the corresponding parent PAHs. Our investigation group have also showed that exposure of HepG2 cells to a dose-range of 6-Cl-benzo[a]pyrene (6-Cl-BaP) and BaP resulted in cytotoxicity above 50 µM and that, at the equimolar doses of 100 and 125 µM, 6-Cl-BaP was able to induce a significantly higher level of DNA damage than BaP.
The present study had two main objectives: 1) identification of the major chlorinated and brominated derivatives of benzo[a]anthracene (BaA) and pyrene (Pyr) formed as disinfection by-products and 2) evaluation of their potential hazard to humans, through the characterization of their potential cytotoxic and genotoxic effects in a human cell line. To synthesize Cl-PAHs and Br-PAHs the method of Mitchell was developed for BaA and Pyr. 1-Cl-Pyr and 1-Br-Pyr were obtained as the major chlorinated and brominated derivatives of Pyr, and 7-Cl-BaA and 7-Br-BaA as the reaction products of BaA. Cell viability and DNA integrity of those derivatives were assessed by the neutral red uptake (NR) and the comet assay, respectively, allowing the comparison of their genotoxic potential.
Although health risks of DBPs are small compared to the health risks of waterborne diseases, the formation of hazardous halogenated-PAHs in chlorinated water water emphasizes the need of development of new and safer water disinfection methods.INS
- …