13,401 research outputs found

    New gravitational solutions via a Riemann-Hilbert approach

    Full text link
    We consider the Riemann-Hilbert factorization approach to solving the field equations of dimensionally reduced gravity theories. First we prove that functions belonging to a certain class possess a canonical factorization due to properties of the underlying spectral curve. Then we use this result, together with appropriate matricial decompositions, to study the canonical factorization of non-meromorphic monodromy matrices that describe deformations of seed monodromy matrices associated with known solutions. This results in new solutions, with unusual features, to the field equations.Comment: 29 pages, 2 figures; v2: reference added, matches published versio

    On Quantum Special Kaehler Geometry

    Full text link
    We compute the effective black hole potential V of the most general N=2, d=4 (local) special Kaehler geometry with quantum perturbative corrections, consistent with axion-shift Peccei-Quinn symmetry and with cubic leading order behavior. We determine the charge configurations supporting axion-free attractors, and explain the differences among various configurations in relations to the presence of ``flat'' directions of V at its critical points. Furthermore, we elucidate the role of the sectional curvature at the non-supersymmetric critical points of V, and compute the Riemann tensor (and related quantities), as well as the so-called E-tensor. The latter expresses the non-symmetricity of the considered quantum perturbative special Kaehler geometry.Comment: 1+43 pages; v2: typo corrected in the curvature of Jordan symmetric sequence at page 2

    In-Situ absolute phase detection of a microwave field via incoherent fluorescence

    Full text link
    Measuring the amplitude and the absolute phase of a monochromatic microwave field at a specific point of space and time has many potential applications, including precise qubit rotations and wavelength quantum teleportation. Here we show how such a measurement can indeed be made using resonant atomic probes, via detection of incoherent fluorescence induced by a laser beam. This measurement is possible due to self-interference effects between the positive and negative frequency components of the field. In effect, the small cluster of atoms here act as a highly localized pick-up coil, and the fluorescence channel acts as a transmission line.Comment: 13 pages, 5 figure

    Automatic speaker segmentation using multiple features and distance measures: a comparison of three approaches

    Get PDF
    This paper addresses the problem of unsupervised speaker change detection. Three systems based on the Bayesian Information Criterion (BIC) are tested. The first system investigates the AudioSpectrumCentroid and the AudioWaveformEnvelope features, implements a dynamic thresholding followed by a fusion scheme, and finally applies BIC. The second method is a real-time one that uses a metric-based approach employing the line spectral pairs and the BIC to validate a potential speaker change point. The third method consists of three modules. In the first module, a measure based on second-order statistics is used; in the second module, the Euclidean distance and T2 Hotelling statistic are applied; and in the third module, the BIC is utilized. The experiments are carried out on a dataset created by concatenating speakers from the TIMIT database, that is referred to as the TIMIT data set. A comparison between the performance of the three systems is made based on t-statistics
    • …
    corecore