385 research outputs found
The mixed black hole partition function for the STU model
We evaluate the mixed partition function for dyonic BPS black holes using the
recently proposed degeneracy formula for the STU model. The result factorizes
into the OSV mixed partition function times a proportionality factor. The
latter is in agreement with the measure factor that was recently conjectured
for a class of N=2 black holes that contains the STU model.Comment: 14 page
CHL Dyons and Statistical Entropy Function from D1-D5 System
We give a proof of the recently proposed formula for the dyon spectrum in CHL
string theories by mapping it to a configuration of D1 and D5-branes and
Kaluza-Klein monopole. We also give a prescription for computing the degeneracy
as a systematic expansion in inverse powers of charges. The computation can be
formulated as a problem of extremizing a duality invariant statistical entropy
function whose value at the extremum gives the logarithm of the degeneracy.
During this analysis we also determine the locations of the zeroes and poles of
the Siegel modular forms whose inverse give the dyon partition function in the
CHL models.Comment: LaTeX file, 48 pages; v2: typos correcte
Walls of Marginal Stability and Dyon Spectrum in N=4 Supersymmetric String Theories
The spectrum of quarter BPS dyons in N=4 supersymmetric string theories can
change as the asymptotic moduli cross walls of marginal stability on which the
dyon can break apart into a pair of half BPS states. In this paper we classify
these marginal stability walls and examine this phenomenon in the context of
exact dyon spectrum found in a class of N=4 supersymmetric string theories. We
argue that the dyon partition functions in different domains separated by
marginal stability walls are the same, but the choice of integration contour
needed for extracting the degeneracies from the partition function differ in
these different regions. We also find that in the limit of large charges the
change in the degeneracy is exponentially suppressed compared to the leading
contribution. This is consistent with the fact that in the computation of black
hole entropy we do not encounter any change as the asymptotic moduli fields
move across the walls of marginal stability. Finally we carry out some tests of
S-duality invariance in the theory.Comment: LateX file, 1 figure, 42 pages; v2 more tests of S-duality added with
complete proof for all N<7; v3: minor change
Dying Dyons Don't Count
The dyonic 1/4-BPS states in 4D string theory with N=4 spacetime
supersymmetry are counted by a Siegel modular form. The pole structure of the
modular form leads to a contour dependence in the counting formula obscuring
its duality invariance. We exhibit the relation between this ambiguity and the
(dis-)appearance of bound states of 1/2-BPS configurations. Using this insight
we propose a precise moduli-dependent contour prescription for the counting
formula. We then show that the degeneracies are duality-invariant and are
correctly adjusted at the walls of marginal stability to account for the
(dis-)appearance of the two-centered bound states. Especially, for large black
holes none of these bound states exists at the attractor point and none of
these ambiguous poles contributes to the counting formula. Using this fact we
also propose a second, moduli-independent contour which counts the "immortal
dyons" that are stable everywhere.Comment: 27 pages, 2 figures; one minus sign correcte
On the dyon partition function in N=2 theories
We study the entropy function of two N =2 string compactifications obtained
as freely acting orbifolds of N=4 theories : the STU model and the FHSV model.
The Gauss-Bonnet term for these compactifications is known precisely. We apply
the entropy function formalism including the contribution of this four
derivative term and evaluate the entropy of dyons to the first subleading order
in charges for these models. We then propose a partition function involving the
product of three Siegel modular forms of weight zero which reproduces the
degeneracy of dyonic black holes in the STU model to the first subleading order
in charges. The proposal is invariant under all the duality symmetries of the
STU model. For the FHSV model we write down an approximate partition function
involving a Siegel modular form of weight four which captures the entropy of
dyons in the FHSV model in the limit when electric charges are much larger than
magnetic charges.Comment: 48 page
Dyon Spectrum in Generic N=4 Supersymmetric Z_N Orbifolds
We find the exact spectrum of a class of quarter BPS dyons in a generic N=4
supersymmetric Z_N orbifold of type IIA string theory on K3\times T^2 or T^6.
We also find the asymptotic expansion of the statistical entropy to first
non-leading order in inverse power of charges and show that it agrees with the
entropy of a black hole carrying same set of charges after taking into account
the effect of the four derivative Gauss-Bonnet term in the effective action of
the theory.Comment: LaTeX file, 39 pages; minor change
Dyon Spectrum in N=4 Supersymmetric Type II String Theories
We compute the spectrum of quarter BPS dyons in freely acting Z_2 and Z_3
orbifolds of type II string theory compactified on a six dimensional torus. For
large charges the result for statistical entropy computed from the degeneracy
formula agrees with the corresponding black hole entropy to first non-leading
order after taking into account corrections due to the curvature squared terms
in the effective action. The result is significant since in these theories the
entropy of a small black hole, computed using the curvature squared corrections
to the effective action, fails to reproduce the statistical entropy associated
with elementary string states.Comment: LaTeX file, 32 pages; v2:minor change
Absorption and quasinormal modes of classical fields propagating on 3D and 4D de Sitter spacetime
We extensively study the exact solutions of the massless Dirac equation in 3D
de Sitter spacetime that we published recently. Using the Newman-Penrose
formalism, we find exact solutions of the equations of motion for the massless
classical fields of spin s=1/2,1,2 and to the massive Dirac equation in 4D de
Sitter metric. Employing these solutions, we analyze the absorption by the
cosmological horizon and de Sitter quasinormal modes. We also comment on the
results given by other authors.Comment: 31 page
Three String Junction and N=4 Dyon Spectrum
The exact spectrum of dyons in a class of N=4 supersymmetric string theories
gives us information about dyon spectrum in N=4 supersymmetric gauge theories.
This in turn can be translated into prediction about the BPS spectrum of three
string junctions on a configuration of three parallel D3-branes. We show that
this prediction agrees with the known spectrum of three string junction in
different domains in the moduli space separated by walls of marginal stability.Comment: LaTeX file, 14 page
Black hole partition functions and duality
The macroscopic entropy and the attractor equations for BPS black holes in
four-dimensional N=2 supergravity theories follow from a variational principle
for a certain `entropy function'. We present this function in the presence of
R^2-interactions and non-holomorphic corrections. The variational principle
identifies the entropy as a Legendre transform and this motivates the
definition of various partition functions corresponding to different ensembles
and a hierarchy of corresponding duality invariant inverse Laplace integral
representations for the microscopic degeneracies. Whenever the microscopic
degeneracies are known the partition functions can be evaluated directly. This
is the case for N=4 heterotic CHL black holes, where we demonstrate that the
partition functions are consistent with the results obtained on the macroscopic
side for black holes that have a non-vanishing classical area. In this way we
confirm the presence of a measure in the duality invariant inverse Laplace
integrals. Most, but not all, of these results are obtained in the context of
semiclassical approximations. For black holes whose area vanishes classically,
there remain discrepancies at the semiclassical level and beyond, the nature of
which is not fully understood at present.Comment: 36 pages, Late
- …