217 research outputs found

    Bingham flow in porous media with obstacles of different size

    Full text link
    By using the unfolding operators for periodic homogenization, we give a general compactness result for a class of functions defined on bounded domains presenting perforations of two different size. Then we apply this result to the homogenization of the flow of a Bingham fluid in a porous medium with solid obstacles of different size. Next we give the interpretation of the limit problem in term of a non linear Darcy law.Comment: 19 pages, 2 figure

    Waveguide with non-periodically alternating Dirichlet and Robin conditions: homogenization and asymptotics

    Full text link
    We consider a magnetic Schroedinger operator in a planar infinite strip with frequently and non-periodically alternating Dirichlet and Robin boundary conditions. Assuming that the homogenized boundary condition is the Dirichlet or the Robin one, we establish the uniform resolvent convergence in various operator norms and we prove the estimates for the rates of convergence. It is shown that these estimates can be improved by using special boundary correctors. In the case of periodic alternation, pure Laplacian, and the homogenized Robin boundary condition, we construct two-terms asymptotics for the first band functions, as well as the complete asymptotics expansion (up to an exponentially small term) for the bottom of the band spectrum

    Homogenization and norm resolvent convergence for elliptic operators in a strip perforated along a curve

    Full text link
    We consider an infinite planar straight strip perforated by small holes along a curve. In such domain, we consider a general second order elliptic operator subject to classical boundary conditions on the holes. Assuming that the perforation is non-periodic and satisfies rather weak assumptions, we describe all possible homogenized problems. Our main result is the norm resolvent convergence of the perturbed operator to a homogenized one in various operator norms and the estimates for the rate of convergence. On the basis of the norm resolvent convergence, we prove the convergence of the spectrum

    On a waveguide with frequently alternating boundary conditions: homogenized Neumann condition

    Full text link
    We consider a waveguide modeled by the Laplacian in a straight planar strip. The Dirichlet boundary condition is taken on the upper boundary, while on the lower boundary we impose periodically alternating Dirichlet and Neumann condition assuming the period of alternation to be small. We study the case when the homogenization gives the Neumann condition instead of the alternating ones. We establish the uniform resolvent convergence and the estimates for the rate of convergence. It is shown that the rate of the convergence can be improved by employing a special boundary corrector. Other results are the uniform resolvent convergence for the operator on the cell of periodicity obtained by the Floquet-Bloch decomposition, the two-terms asymptotics for the band functions, and the complete asymptotic expansion for the bottom of the spectrum with an exponentially small error term

    Scalar problems in junctions of rods and a plate. II. Self-adjoint extensions and simulation models

    Get PDF
    In this work we deal with a scalar spectral mixed boundary value problem in a spacial junction of thin rods and a plate. Constructing asymptotics of the eigenvalues, we employ two equipollent asymptotic models posed on the skeleton of the junction, that is, a hybrid domain. We, first, use the technique of self-adjoint extensions and, second, we impose algebraic conditions at the junction points in order to compile a problem in a function space with detached asymptotics. The latter problem is involved into a symmetric generalized Green formula and, therefore, admits the variational formulation. In comparison with a primordial asymptotic procedure, these two models provide much better proximity of the spectra of the problems in the spacial junction and in its skeleton. However, they exhibit the negative spectrum of finite multiplicity and for these "parasitic" eigenvalues we derive asymptotic formulas to demonstrate that they do not belong to the service area of the developed asymptotic models.Comment: 31 pages, 2 figur
    • …
    corecore