28 research outputs found

    Therapeutic Use of Self and Fieldwork Experience: An Exploration of the Art and Science of Occupational Therapy

    Get PDF
    The clinical practice of occupational therapy has been described as a blend of both art and science. For occupational therapy students, Level II fieldwork experiences offer early opportunities to refine both client-centered attitudes and scientific aptitude in relationship-based caregiving. In this retrospective study, researchers examined the ability to predict final Fieldwork Performance Evaluation scores from the following non-cognitive (i.e., art) and cognitive (i.e., science) variables: ranked student responses to the Self-Assessment of Modes Questionnaire (v.II); undergraduate grade point average (GPA; cumulative and science), and Graduate Record Examination (GRE) scores (quantitative, verbal, and analytic). Using a series of simple linear regressions, researchers analyzed data from sixty-nine master’s-level occupational therapy students. For the first Level II fieldwork experience, empathizing and empathizing-revised modes appeared to be a significant predictor with moderate, positive correlation coefficients (p=.008, r=.329; p=.01, r=.296, respectively). For the second Level II fieldwork experience, collaborating and instructing modes appeared to be significant predictors (p=.036, r= -.255; p=.037, r=.254 respectively). GPA and GRE scores were not predictive of fieldwork success. The degree to which art and science shape expectations for relationship-based client interactions during fieldwork experiences requires further investigation. However, calling attention to occupational therapy students’ preferred communication modes highlight how client interactions may be shaped to fit the students’ natural tendencies rather than the needs of the client

    Characterization of Protein Metabolism in Undifferentiated and Differentiated Murine Muscle Tissue

    Get PDF
    The emergence of cell culture experiments have greatly expanded the understanding of skeletal muscle physiology. However, there is a paucity of data regarding the behaviors of cells grown in culture at various stages versus in vivo. This preliminary set of studies was designed to assess alterations of anabolic responses between undifferentiated and differentiated muscle tissue in [high] and [low] glucose media along with varying dosages of insulin. Purpose: Determine if there is a disparity in fractional synthesis rates (FSR) between C2C12 myoblasts and myotubes with varying levels of insulin and in [high] (4.5g/L) and [low] glucose (2.75 g/L) media. Methods: All cells that were going to be differentiated were started on a [high] glucose differentiation media for 48 hours. The [high] glucose differentiation media was continually applied for the [high] glucose group until harvest of the cells. The [low] glucose media group had the [high] glucose differentiation media removed and [low] glucose differentiation media was applied for 48 hours until the cells were harvested. Both [low] and [high] glucose groups received three different levels of insulin. T-25’s received either 75 µL, 150 µL, or 300 µL. T-75’s 195 µL, 390 µL, and 780 µL. Deuterium oxide was applied 24 hours prior to harvest of the cells at a level of 4%. Results: Preliminary data demonstrates that differentiated murine myotubes have slightly elevated FSR than undifferentiated myoblasts (p\u3c0.013). When insulin was added to the growth media, FSR was found to be elevated in undifferentiated cells compared to controls (p\u3c0.05). Within the differentiated myotubes, the [low] glucose myotubes had higher FSR than myotubes that were incubated in [high] glucose myotubes (p\u3c0.001). There was also no difference in FSR based on flask size for either the undifferentiated (p\u3e0.181) or differentiated (p\u3e0.464) C2C12’s. Conclusion: Future investigators must be aware of the ratio of undifferentiated cells and differentiated myotubes as this ratio could confound results as myoblasts are still present even at later stages of differentiation. Current protocols for differentiation media, regarding insulin addition, provide for optimal anabolic responses. Elevated FSR rates in the myotubes fed [low] glucose media could be explained by the cells having a higher turnover rate of cellular proteins

    Autophagy is Required for mTOR-Mediated Anabolism in Skeletal Muscle

    Get PDF
    PURPOSE: While much has been discovered about the role autophagy in protein degradation, recent evidence suggests that autophagy is required for muscular adaptations to exercise, hinting at a hitherto unknown cross-talk between autophagic proteolysis and muscle protein anabolism. Here, we set out to further elucidate the metabolic mechanisms by which autophagy may influence protein anabolism. METHODS: L6 myoblasts received either electrical pulse stimulation (EPS) to induce muscle contraction or were unstimulated to serve as controls, and were then treated with an inhibitor of the ATG4 enzyme which catalyzes the initial step of autophagy NSC185058 (NSC, 100 μM) or DMSO as a vehicle control (VC). After 24 hours, cells were lysed and Western immunoblotted for P70S6K, DEPTOR, MAPK, AMPK, LC3, and P62. Differences between VC and NSC treated groups were assessed by a two-tailed t-test, while comparisons between VC, EPS, and EPS+NSC groups were made using one-way ANOVA and SNK post-hoc test, with α levels set at 0.05. RESULTS: EPS induced a 97% increase in P70S6K phosphorylation (p\u3c0.05), with NSC treatment blunting this effect, leading to a 22% increase (P\u3e0.05). EPS resulted in a 37% reduction in DEPTOR content (p\u3c0.05); however, NSC treatment alone produced a 166% decrease in DEPTOR level (p\u3c0.05), with EPS+NSC leading to an even larger reduction (-766%) in DEPTOR than EPS alone. NSC treatment led to a decrease (-85%, p\u3e0.05) LC3II/I ratio relative to VC, which was reduced in both the EPS (-68%, p\u3c0.05) and EPS+NSC (-87%, p\u3c0.05) conditions. P62 content increased by 749% with EPS (p\u3c0.05), with no significant difference in P62 level between VC and EPS+NSC, and NSC treatment alone led to a 61% decrease in P62 (p\u3c0.05). MAPK phosphorylation was elevated in both EPS (99.9%, p\u3e0.05) and EPS+NSC (149.13, p\u3c0.05). Neither NSC nor EPS+NSC altered phosphorylation status of AMPK. CONCLUSION: Despite reductions in DEPTOR, mTOR activity was blunted in EPS+NSC cells, indicating that mTOR mediated anabolic signaling requires autophagy post muscle contraction. This is particular to the mTOR pathway, as an increase in MAPK phosphorylation was still observed in EPS+NSC. While the decrease in LC3II/I ratio and accumulation of P62 seen after EPS are likely due to inhibition of autophagy due to mTOR activity, our data indicate that inhibition of ATG4 by NSC185058 blunts mTOR activity after muscle contraction. This effect is not due to activation of the cellular energy sensor AMPK, as we found no increase in AMPK phosphorylation in any condition. Further work will be required to fully elucidate the mechanism by which NSC185058 inhibits mTOR-mediated anabolism

    Autophagy, but Not Proteolysis, May Aid in Muscle Protein Synthesis

    Get PDF
    For muscle growth to occur, protein synthesis must be greater than protein degradation. However, up to this point, anabolic pathways have garnered the brunt of investigations examining anabolic capacity with little investigation into the connectedness of catabolic signaling on these anabolic targets. PURPOSE: The purpose of this study was to elucidate the contributions of proteasomal-dependent and autophagic-dependent catabolic pathways on anabolism via analysis of fractional synthetic rates (FSR) in L6 myotubes. METHODS: Differentiated, cultured L6 myoblasts were treated with media containing 4% deuterium oxide (stable isotope label) and a corresponding pharmacological treatment (NSC 185058 [autophagic inhibitor; 100 μM], MG-262 [proteasomal inhibitor; 0.01 μM] or DMSO control; n=3/group) during the final 24-hours of the differentiation period prior to harvest. The myofibrillar pellet of the processed samples was used to determine FSR via mass-spectrometry analysis. DMSO-treated myotubes served as controls, with a one-way analysis of variance and Tukey’s post-hoc test used to test for any differences among groups. RESULTS: Our results indicate that MG-262 had no impact on myofibrillar FSR when compared to DMSO control (MG-262 1.0993 %/day vs. control 1.239 %/day). However, NSC 185058 lowered myofibrillar FSR (NSC 185058 0.9009 %/day vs. control 1.239 %/day; P=0.0282). CONCLUSION: These data suggest that inhibition of autophagic machinery can impair anabolism. This may be due to autophagy’s role in increasing the amino acid pool within the cell. Further, the lack of inhibition seen from MG-262 suggests that there is a delineation of roles within the catabolic pathways in regard to their influence on anabolism in healthy, metabolically unchallenged myotubes

    Insulin-induced Increase in Anabolic Capacity is Blunted by Autophagic Inhibition in L6 Myotubes

    Get PDF
    Insulin is an anabolic hormone that acts on skeletal muscle cells to stimulate protein synthesis, an effect that is enhanced by the availability of amino acids. While autophagy within the cell provides an intracellular source of amino acids to support anabolism, little is known about how this pathway impacts the insulin-induced increase in anabolic capacity within skeletal muscle cells. PURPOSE: The purpose of this study was to determine the impact of autophagic inhibition in cultured L6 myotubes in conjunction with insulin stimulation in vitro. METHODS: Differentiated, cultured L6 myotubes were treated for 24 hours with or without insulin (100 nM) and NSC 185058 (100 μM), a specialized inhibitor of the autophagic catabolic pathway, in media enriched with 4% deuterium. Cells were harvested from each treatment group (n=3/group) 24 hours post-deuterium enrichment and were processed for protein synthesis and western blot protein analysis. A one-way ANOVA was used to compare groups, and when significant F ratios were present, a Student’s Newman-Keuls post hoc procedure was used to test differences among group means. Alpha was set at p≤0.05 for all analyses. RESULTS: Cells treated with insulin (INS) had a higher ratio of phosphorylated to total P70S6K compared to untreated (CON) cells and those incubated with both insulin and NSC 185058 (INS+NSC; 1694% and 327%, respectively; p\u3c0.05). INS+NSC also decreased the ratio of phosphorylated to total 4EBP1 relative to CON (-51%) and INS (-49%), although these differences were not significant (p\u3e0.05). Myofibrillar protein synthesis was stimulated with INS compared to CON and INS+NSC (30.3% and 70.1% respectively; p\u3c0.05) but was lower in INS+NSC relative to CON (-23.4%; p\u3c0.05). CONCLUSION: Results from our study indicate that insulin (100 nM) stimulates anabolism in skeletal muscle cells, but that addition of the autophagic inhibitor NSC 185058 (100 μM) blunts this effect to a level similar to or less than control. Further, our data suggest that the reduction of protein synthesis is mediated through the downregulation of the mTORC1 signaling pathway. While it is widely recognized that insulin promotes anabolic activity through both the direct stimulation of mTOR signaling and extracellular amino acid uptake, our data strongly indicate that autophagic processes are necessary for full anabolic responses in muscle. This decrease in anabolic capacity supports previous literature indicating that the amino acid availability impacts the stimulatory impact of insulin on protein synthesis

    Autophagy is Required for the Anabolic Response to Muscle Contraction

    Get PDF
    Exercise is a key stimulus in regulating the behavior and metabolism of skeletal muscle, with exercise inducing muscular growth through activation of the anabolic mechanistic target of rapamycin kinase (mTOR). Separately, there is mounting evidence that exercise increases autophagy (one of the main routes by which intracellular proteins are degraded) and that the autophagic process may indeed be required for adaptations to exercise training. PURPOSE: To investigate the effects of autophagy inhibition on mTOR signaling and cellular anabolism after muscular contraction. METHODS: Cultured L6 myotubes were to exposed to electrical pulse stimulation using a stimulator set to deliver bipolar pulses of 30V at 100 Hz for 200 ms every fifth second for 60 minutes. Subsequently, cells received either vehicle control, or 100 μM NSC-185058, an antagonist of the key autophagy protein ATG4B and known inhibitor of autophagy. All groups were also exposed to 4% deuterium oxide, a stable isotopic tracer for measurements of protein synthesis. 24 hours post “exercise” bout, cells were lysed in ice-cold Norris buffer, and prepared for Western immunoblot of protein expression, or determination of protein fractional synthesis rate (FSR) of the myofibrillar fraction via mass-spectrometry analysis. Non-stimulated cells receiving vehicle control treatment served as controls, with a one-way analysis of variance and Tukey’s post-hoc test used to test for any differences between groups. RESULTS: We found that phosphorylation of a key downstream target of mTOR, P70S6 kinase, was roughly seven times greater in cells subjected to EPS and vehicle control (710.3%) relative to control (p0.05). While there was a trend for EPS treatment to increase expression of ATG4B, along with a reduction of ATG4B content as a result of NSC-185058 treatment, this finding did not rise to the level of statistical significance. There were no differences in FSR between cells exposed to EPS; however, NSC-185058 treatment significantly reduced FSR in EPS treated cells relative to controls (0.8712 %/hr vs 1.193 %/hr). CONCLUSION: These findings present two conclusions: high-intensity EPS as an in vitro model of exercise elevates mTOR signaling through P70S6K 24 hours post exercise, and mTOR activation as a result of muscular contraction is reliant upon autophagy in skeletal muscle. Further work will be required to elucidate the dynamics of this relationship, and the interplay between skeletal muscle autophagy and anabolism

    Noninvasive optical inhibition with a red-shifted microbial rhodopsin

    Get PDF
    Optogenetic inhibition of the electrical activity of neurons enables the causal assessment of their contributions to brain functions. Red light penetrates deeper into tissue than other visible wavelengths. We present a red-shifted cruxhalorhodopsin, Jaws, derived from Haloarcula (Halobacterium) salinarum (strain Shark) and engineered to result in red light–induced photocurrents three times those of earlier silencers. Jaws exhibits robust inhibition of sensory-evoked neural activity in the cortex and results in strong light responses when used in retinas of retinitis pigmentosa model mice. We also demonstrate that Jaws can noninvasively mediate transcranial optical inhibition of neurons deep in the brains of awake mice. The noninvasive optogenetic inhibition opened up by Jaws enables a variety of important neuroscience experiments and offers a powerful general-use chloride pump for basic and applied neuroscience.McGovern Institute for Brain Research at MIT (Razin Fellowship)United States. Defense Advanced Research Projects Agency. Living Foundries Program (HR0011-12-C-0068)Harvard-MIT Joint Research Grants Program in Basic NeuroscienceHuman Frontier Science Program (Strasbourg, France)Institution of Engineering and Technology (A. F. Harvey Prize)McGovern Institute for Brain Research at MIT. Neurotechnology (MINT) ProgramNew York Stem Cell Foundation (Robertson Investigator Award)National Institutes of Health (U.S.) (New Innovator Award 1DP2OD002002)National Institute of General Medical Sciences (U.S.) (EUREKA Award 1R01NS075421)National Institutes of Health (U.S.) (Grant 1R01DA029639)National Institutes of Health (U.S.) (Grant 1RC1MH088182)National Institutes of Health (U.S.) (Grant 1R01NS067199)National Science Foundation (U.S.) (Career Award CBET 1053233)National Science Foundation (U.S.) (Grant EFRI0835878)National Science Foundation (U.S.) (Grant DMS0848804)Society for Neuroscience (Research Award for Innovation in Neuroscience)Wallace H. Coulter FoundationNational Institutes of Health (U.S.) (RO1 MH091220-01)Whitehall FoundationEsther A. & Joseph Klingenstein Fund, Inc.JPB FoundationPIIF FundingNational Institute of Mental Health (U.S.) (R01-MH102441-01)National Institutes of Health (U.S.) (DP2-OD-017366-01)Massachusetts Institute of Technology. Simons Center for the Social Brai

    Rapid Effects of Hearing Song on Catecholaminergic Activity in the Songbird Auditory Pathway

    Get PDF
    Catecholaminergic (CA) neurons innervate sensory areas and affect the processing of sensory signals. For example, in birds, CA fibers innervate the auditory pathway at each level, including the midbrain, thalamus, and forebrain. We have shown previously that in female European starlings, CA activity in the auditory forebrain can be enhanced by exposure to attractive male song for one week. It is not known, however, whether hearing song can initiate that activity more rapidly. Here, we exposed estrogen-primed, female white-throated sparrows to conspecific male song and looked for evidence of rapid synthesis of catecholamines in auditory areas. In one hemisphere of the brain, we used immunohistochemistry to detect the phosphorylation of tyrosine hydroxylase (TH), a rate-limiting enzyme in the CA synthetic pathway. We found that immunoreactivity for TH phosphorylated at serine 40 increased dramatically in the auditory forebrain, but not the auditory thalamus and midbrain, after 15 min of song exposure. In the other hemisphere, we used high pressure liquid chromatography to measure catecholamines and their metabolites. We found that two dopamine metabolites, dihydroxyphenylacetic acid and homovanillic acid, increased in the auditory forebrain but not the auditory midbrain after 30 min of exposure to conspecific song. Our results are consistent with the hypothesis that exposure to a behaviorally relevant auditory stimulus rapidly induces CA activity, which may play a role in auditory responses

    Muscular Contractions Facilitate Systemic Circulation of MicroRNA that Impact Cancer

    Get PDF
    Currently there is an evolving appreciation for exercise- combined therapies prescribed by clinicians for breast cancer patients; however there remains a of lack explanation of biological regulation of exercise on breast cancer, and the role that contracting skeletal muscle, the mechanistic machinery of exercise, has in the documented improved prognosis of exercising breast cancer patients. MicroRNAs (miRNA) are small non-coding RNAs found in abundance in skeletal muscle that have been proposed as possible myokines. Exogenous miRNA have post-transcriptional abilities allowing them to act as negative gene regulators of gene expression such as those in the mammalian target of rapamycin (mTOR) pathway. We have unique preliminary findings that myokines released during electrically-stimulated muscle contraction of hemicorpus-prepared rats affects the anabolic activity and capacity of breast cancer cells. When MCF-7 cancer cells were treated with perfusate collected during muscle contraction, a significant inhibition of proliferation was noted alongside diminished mTOR activity and global rates of protein synthesis. PURPOSE: The purpose of this study was to profile microRNA released into circulation during lower limb muscular contractions that may influence the anabolic signaling of breast cancer cells. METHODS: Female Wistar rats underwent a hemicorpus hindlimb perfusion preparation with and without electrically-stimulated muscular contractions. RT-PCR analysis of select microRNAs, known to impact cellular anabolism, was performed on both muscle and perfusate samples collected pre- and post-contraction (Non-Stim=4. E-Stim=4, respectively). RESULTS: A total of 52 microRNA were identified across all samples, with an average of 65 microRNAs detected per sample. We also noted a significant differential expression of 8 microRNA between E-Stim and Non-Stim samples within animals (p0.05), and was 147% higher in E-Stim perfusate samples compared to Non-Stim (pCONCLUSION: Our results suggest that skeletal muscle is a rich endogenous source of microRNA, including those associated with altered mTOR pathway gene expression. Muscular contraction comparable to resistance exercise facilitates the release of microRNA into systemic circulation which supports exercise facilitating cross-talk between muscle and other tissues, including cancer
    corecore