3 research outputs found

    Hyperspectral imaging and robust statistics in non-melanoma skin cancer analysis

    Get PDF
    [EN] Non-Melanoma skin cancer is one of the most frequent types of cancer. Early detection is encouraged so as to ensure the best treatment, Hyperspectral imaging is a promising technique for non-invasive inspection of skin lesions, however, the optimal wavelengths for these purposes are yet to be conclusively determined. A visible-near infrared hyperspectral camera with an ad-hoc built platform was used for image acquisition in the present study. Robust statistical techniques were used to conclude an optimal range between 573.45 and 779.88 nm to distinguish between healthy and non-healthy skin. Wavelengths between 429.16 and 520.17 nm were additionally found to be optimal for the differentiation between cancer typesSIGerencia Regional de Salud de Castilla y LeónSpanish Ministry of Science, Innovation and UniversitiesInstituto de Salud Carlos IIIJunta de Castilla y Leó

    Deep Convolutional Neural Support Vector Machines for the Classification of Basal Cell Carcinoma Hyperspectral Signatures

    Get PDF
    [EN] Non-melanoma skin cancer, and basal cell carcinoma in particular, is one of the most common types of cancer. Although this type of malignancy has lower metastatic rates than other types of skin cancer, its locally destructive nature and the advantages of its timely treatment make early detection vital. The combination of multispectral imaging and artificial intelligence has arisen as a powerful tool for the detection and classification of skin cancer in a non-invasive manner. The present study uses hyperspectral images to discern between healthy and basal cell carcinoma hyperspectral signatures. Upon the combined use of convolutional neural networks, with a final support vector machine activation layer, the present study reaches up to 90% accuracy, with an area under the receiver operating characteristic curve being calculated at 0.9 as well. While the results are promising, future research should build upon a dataset with a larger number of patients.SIJunta de Castilla y Leo

    Deep Convolutional Neural Support Vector Machines for the Classification of Basal Cell Carcinoma Hyperspectral Signatures

    No full text
    Non-melanoma skin cancer, and basal cell carcinoma in particular, is one of the most common types of cancer. Although this type of malignancy has lower metastatic rates than other types of skin cancer, its locally destructive nature and the advantages of its timely treatment make early detection vital. The combination of multispectral imaging and artificial intelligence has arisen as a powerful tool for the detection and classification of skin cancer in a non-invasive manner. The present study uses hyperspectral images to discern between healthy and basal cell carcinoma hyperspectral signatures. Upon the combined use of convolutional neural networks, with a final support vector machine activation layer, the present study reaches up to 90% accuracy, with an area under the receiver operating characteristic curve being calculated at 0.9 as well. While the results are promising, future research should build upon a dataset with a larger number of patients
    corecore