28 research outputs found

    Microtomography developments on the ANATOMIX beamline at Synchrotron SOLEIL

    Full text link
    The new ANATOMIX beamline at Synchrotron SOLEIL is dedicated to hard X-ray full-field tomography techniques. Operating in a range of photon energies from approximately 5 to 50 keV, it offers both parallel-beam projection microtomography and nanotomography using a zone-plate transmission X-ray microscope and thus covers a range of spatial resolution from 20 nm to 20 μ\mum, expressed in terms of useful pixel size. Here we describe the microtomography instrumentation and its performance.Comment: Paper submitted for publication in the Proceedings of the 15th International Conference on X-Ray Microscopy (XRM 2020), 19--24 July 2020, Taipei, Taiwan, edited by D.-H. Wei and C.-M. Cheng and H.-W. Shiu and T.-H. Chuang, AIP Conf. Pro

    Dermacentor reticulatus: a vector on the rise

    Get PDF
    Dermacentor reticulatus is a hard tick species with extraordinary biological features. It has a high reproduction rate, a rapid developmental cycle, and is also able to overcome years of unfavourable conditions. Dermacentor reticulatus can survive under water for several months and is cold-hardy even compared to other tick species. It has a wide host range: over 60 different wild and domesticated hosts are known for the three active developmental stages. Its high adaptiveness gives an edge to this tick species as shown by new data on the emergence and establishment of D. reticulatus populations throughout Europe. The tick has been the research focus of a growing number of scientists, physicians and veterinarians. Within the Web of Science database, more than a fifth of the over 700 items published on this species between 1897 and 2015 appeared in the last three years (2013–2015). Here we attempt to synthesize current knowledge on the systematics, ecology, geographical distribution and recent spread of the species and to highlight the great spectrum of possible veterinary and public health threats it poses. Canine babesiosis caused by Babesia canis is a severe leading canine vector-borne disease in many endemic areas. Although less frequently than Ixodes ricinus, D. reticulatus adults bite humans and transmit several Rickettsia spp., Omsk haemorrhagic fever virus or Tick-borne encephalitis virus. We have not solely collected and reviewed the latest and fundamental scientific papers available in primary databases but also widened our scope to books, theses, conference papers and specialists colleagues’ experience where needed. Besides the dominant literature available in English, we also tried to access scientific literature in German, Russian and eastern European languages as well. We hope to inspire future research projects that are necessary to understand the basic life-cycle and ecology of this vector in order to understand and prevent disease threats. We conclude that although great strides have been made in our knowledge of the eco-epidemiology of this species, several gaps still need to be filled with basic research, targeting possible reservoir and vector roles and the key factors resulting in the observed geographical spread of D. reticulatus. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13071-016-1599-x) contains supplementary material, which is available to authorized users

    Vaccination against large Babesia species from dogs.

    No full text
    The original observation of Sibinovic that soluble parasite antigens (SPA) of B. canis could be used to protect dogs against challenge infection formed the starting point for the development of an effective vaccine. With the advent of in vitro cultivation techniques for haemoprotozoan parasites an important tool became available for the commercial production of the vaccine antigens. A first generation vaccine was developed for dogs, but it appeared that the level of protection induced was not complete. In contrast to what was found with the SPA from serum/plasma of infected animals, protection induced with SPA from a single Babesia canis strain protected against a homologous challenge infection only. Further research led to the discovery that a combination of SPA of B. canis and SPA of B. rossi induced a broad spectrum of immunity. This improved vaccine, Nobivac Piro, not only induces protection against heterologous B. canis infection, but also against heterologous B. rossi infection

    Secreted antigens of the amastigote and promastigote forms of

    No full text
    To study the antigens secteted by promastigote and amastigote forms of Leishmania infantum which are able to induce a humoral response in human patients and dogs, we have carried out immunoprecipitation assays with different supernatants of in vitro cultured parasites, metabolically labelled with [35S] methionine, using serum samples from human patients and dogs. In addition, some metabolic labelling experiments were performed daily during the in vitro culture parasite's life cycle to follow the time course excretion-secretion of parasitic antigens. The results demonstrated that the two different hosts developed an antibody response against secreted antigens of both stages of Leishmania infantum. Nevertheless, the humoral response directed against the excreted-secreted antigens of the promastigote forms was qualitatively and quantitatively different when we compare the human and the dog immune responses. On the other hand, when the excreted-secteted antigens of the amastigote forms are immunoprecipitated with eithet human or canine immune serum, the humoral response is similar. In addition, the time course study showed that excretion-secretion of antigens was qualitatively and quantitatively modulated during the parasitic in vitro life cycle

    Preliminary Evaluation of the BrEMA1 Gene as a Tool for Associating Babesia rossi Genotypes and Clinical Manifestation of Canine Babesiosis▿

    No full text
    Babesia rossi, an intraerythrocytic protozoan, causes a severe, often life-threatening disease of domestic dogs. Dogs treated early for B. rossi infection usually recover from the disease, but dogs left untreated or treated at a later stage of infection seldom survive. Dogs infected with B. rossi have varied clinical manifestations that can be categorized as uncomplicated (with a good prognosis) or complicated (with a poor prognosis). One hundred twenty-one blood samples were collected from dogs presented to the Onderstepoort Veterinary Academic Hospital and diagnosed with babesiosis by the use of a thin blood smear. An additional 20 samples were obtained from Babesia-infected dogs from private clinics around the Onderstepoort, Johannesburg, Durban, White River, and Cape Town areas. The samples were screened by PCR targeting the Babesia rossi erythrocyte membrane antigen gene (BrEMA1) and by sequencing of the polymorphic region (i.e., region with a variable number of hexapeptide repeats). Analysis of PCR products revealed 11 different gene profiles, visualized by gel electrophoresis. Twelve distinct BrEMA1 genotypes were identified by sequencing, but the numbers of hexapeptide repeats varied from 6 to 31 (classified as genotype6 to genotype31). The genotypes were retrospectively compared to the clinical case data. The most frequently encountered B. rossi parasites were those attributed to genotype19 (36.2%), genotype28 and genotype29 (20.6% each), and genotype11 (12.7%). These genotypes were also the ones associated with the poorest prognosis. This preliminary finding suggests clinically important differences between the various B. rossi genotypes identified

    Antibodies Raised against Bcvir15, an Extrachromosomal Double-Stranded RNA-Encoded Protein from Babesia canis, Inhibit the In Vitro Growth of the Parasite

    No full text
    As part of a search for homologous members of the Plasmodium falciparum Pf60 multigene family in the intraerythrocytic protozoan parasite Babesia canis, we report here the characterization of a cDNA of 1,115 bp, which was designated Bcvir for its potential viral origin. The Bcvir cDNA contained two overlapping open reading frames (ORFs) (ORF1 from nucleotide [nt] 61 to 486 and ORF2 from nt 417 to 919), where Bcvir15, the deduced ORF1 peptide (M(1) to I(141)), is the main expressed product. The Bcvir cDNA was derived from an extrachromosomal dsRNA element of 1.2 kbp that was always found associated with a double-stranded RNA (dsRNA) of 2.8 kbp by hybridization, and no copy of this cDNA sequence was found in B. canis genomic DNA. Biochemical characterization of Bcvir15, by using polyclonal rabbit sera directed against recombinant proteins, indicated that it is a soluble protein which remained associated with the cytoplasm of the B. canis merozoite. Interestingly, purified immunoglobulins from the anti-glutathione S-transferase-Bcvir15 (at a concentration of 160 μg/ml) induced 50% inhibition of the in vitro growth of B. canis, and the inhibitory effect was associated with morphological damage of the parasite. Our data suggest that the extrachromosomal dsRNA-encoded Bcvir15 protein might interfere with the intracellular growth of the parasite rather than with the process of invasion of the host cell by the merozoite. Epitope mapping of Bcvir15 identified three epitopes that might be essential for the function of the protein
    corecore