45 research outputs found

    Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry Identification of Yeasts Is Contingent on Robust Reference Spectra

    Get PDF
    BACKGROUND: Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) for yeast identification is limited by the requirement for protein extraction and for robust reference spectra across yeast species in databases. We evaluated its ability to identify a range of yeasts in comparison with phenotypic methods. METHODS: MALDI-TOF MS was performed on 30 reference and 167 clinical isolates followed by prospective examination of 67 clinical strains in parallel with biochemical testing (total n = 264). Discordant/unreliable identifications were resolved by sequencing of the internal transcribed spacer region of the rRNA gene cluster. PRINCIPAL FINDINGS: Twenty (67%; 16 species), and 24 (80%) of 30 reference strains were identified to species, (spectral score ≥2.0) and genus (score ≥1.70)-level, respectively. Of clinical isolates, 140/167 (84%) strains were correctly identified with scores of ≥2.0 and 160/167 (96%) with scores of ≥1.70; amongst Candida spp. (n = 148), correct species assignment at scores of ≥2.0, and ≥1.70 was obtained for 86% and 96% isolates, respectively (vs. 76.4% by biochemical methods). Prospectively, species-level identification was achieved for 79% of isolates, whilst 91% and 94% of strains yielded scores of ≥1.90 and ≥1.70, respectively (100% isolates identified by biochemical methods). All test scores of 1.70-1.90 provided correct species assignment despite being identified to "genus-level". MALDI-TOF MS identified uncommon Candida spp., differentiated Candida parapsilosis from C. orthopsilosis and C. metapsilosis and distinguished between C. glabrata, C. nivariensis and C. bracarensis. Yeasts with scores of <1.70 were rare species such as C. nivariensis (3/10 strains) and C. bracarensis (n = 1) but included 4/12 Cryptococcus neoformans. There were no misidentifications. Four novel species-specific spectra were obtained. Protein extraction was essential for reliable results. CONCLUSIONS: MALDI-TOF MS enabled rapid, reliable identification of clinically-important yeasts. The addition of spectra to databases and reduction in identification scores required for species-level identification may improve its utility

    Recent Scientific Discoveries

    No full text

    Development and validation of a method for determining estrogenic compounds in surface water at the ultra-trace level required by the EU Water Framework Directive Watch List

    Full text link
    Natural estrogens (estrone: E1, 17 β-estradiol: E2, estriol: E3) and the synthetic estrogen (17 α- ethinylestradiol: EE2) are endocrine disruptors harmful to aquatic wildlife. The European Commission included these molecules in the surface water Watch Lists issued in 2015 and 2018 under the Water Framework Directive regarding emerging aquatic pollutants, proposing maximum detection limits (LOD) of 0.035 ng/L for EE2 and 0.4 ng/L for E1 and E2. Attaining these limits represents a challenge even with the most up-to-date analytical tools, in particular in surface water. A two-step sample preparation, involving a preliminary extraction of a whole water sample on a solid-phase extraction (SPE) disk and further purification on a Florisil SPE cartridge, was optimized. The purified extract was derivatized subsequently and quantified by LC-MS/MS. The main goal was to maximize the recoveries to achieve the very low LODs required by the European Watch Lists. The method was fully validated in seven surface water. The LODs calculated were below the maximum acceptable limits required by the European Commission.DIADEM - Développement d’une Approche Intégrée pour le Diagnostic de la qualité des Eaux de la Meus

    Mutagenicity tests with griseofulvin.

    No full text
    corecore