2 research outputs found

    Population studies of sporadic cerebral amyloid angiopathy and dementia: a systematic review.

    Get PDF
    BACKGROUND: Deposition of amyloid-beta (Abeta) in vessel walls of the brain as cerebral amyloid angiopathy (CAA) could be a major factor in the pathogenesis of dementia. Here we investigate the relationship between dementia and the prevalence of CAA in older populations. We searched the literature for prospective population-based epidemiological clinicopathological studies, free of the biases of other sampling techniques, which were used as a comparison. METHODS: To identify population-based studies assessing CAA and dementia, a previous systematic review of population-based clinicopathological studies of ageing and dementia was employed. To identify selected-sample studies, PsychInfo (1806-April Week 3 2008), OVID MEDLINE (1950-April Week 2 2008) and Pubmed (searched 21 April 2008) databases were searched using the term "amyloid angiopathy". These databases were also employed to search for any population-based studies not included in the previous systematic review. Studies were included if they reported the prevalence of CAA relative to a dementia classification (clinical or neuropathological). RESULTS: Four population-based studies were identified. They showed that on average 55-59% of those with dementia displayed CAA (of any severity) compared to 28-38% of the non-demented. 37-43% of the demented displayed severe CAA in contrast to 7-24% of the non-demented. There was no overlap in the range of these averages and they were less variable and lower than those reported in 38 selected sample studies (demented v non-demented: 32-100 v 0-77% regardless of severity; 0-50 v 0-11% for severe only). CONCLUSION: CAA prevalence in populations is consistently higher in the demented as compared to the non-demented. This supports a significant role for CAA in the pathogenesis of dementia

    Pathophysiology of the lymphatic drainage of the central nervous system: implications for pathogenesis and therapy of multiple sclerosis

    No full text
    In most organs of the body, immunological reactions involve the drainage of antigens and antigen presenting cells (APCs) along defined lymphatic channels to regional lymph nodes. The CNS is considered to be an immunologically privileged organ with no conventional lymphatics. However, immunological reactions do occur in the CNS in response to infections and in immune-mediated disorders such as multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE). Here, we review evidence that cervical lymph nodes play a role in B and T cell mediated immune reactions in the CNS. Then we define the separate pathways by which interstitial fluid (ISF) and CSF drain to cervical lymph nodes. ISF and solutes drain from the brain along the 100-150nm-wide basement membranes in the walls of capillaries and arteries. In humans, this perivascular pathway is outlined by the deposition of insoluble amyloid (Abeta) in capillary and artery walls in cerebral amyloid angiopathy in Alzheimer's disease. The failure of APCs to migrate to lymph nodes along perivascular lymphatic drainage pathways may be a major factor in immunological privilege of the brain. Lymphatic drainage of CSF is predominantly through the cribriform plate into nasal lymphatics. Lymphatic drainage of ISF and CSF and the specialised cervical lymph nodes to which they drain play significant roles in the induction of immunological tolerance and of adaptive immunological responses in the CNS. Understanding the afferent and efferent arms of the CNS lymphatic system will be valuable for the development of therapeutic strategies for diseases such as M
    corecore