135 research outputs found

    On Identifying Hashtags in Disaster Twitter Data

    Full text link
    Tweet hashtags have the potential to improve the search for information during disaster events. However, there is a large number of disaster-related tweets that do not have any user-provided hashtags. Moreover, only a small number of tweets that contain actionable hashtags are useful for disaster response. To facilitate progress on automatic identification (or extraction) of disaster hashtags for Twitter data, we construct a unique dataset of disaster-related tweets annotated with hashtags useful for filtering actionable information. Using this dataset, we further investigate Long Short Term Memory-based models within a Multi-Task Learning framework. The best performing model achieves an F1-score as high as 92.22%. The dataset, code, and other resources are available on Github

    Hierarchical Multi-Label Classification of Scientific Documents

    Full text link
    Automatic topic classification has been studied extensively to assist managing and indexing scientific documents in a digital collection. With the large number of topics being available in recent years, it has become necessary to arrange them in a hierarchy. Therefore, the automatic classification systems need to be able to classify the documents hierarchically. In addition, each paper is often assigned to more than one relevant topic. For example, a paper can be assigned to several topics in a hierarchy tree. In this paper, we introduce a new dataset for hierarchical multi-label text classification (HMLTC) of scientific papers called SciHTC, which contains 186,160 papers and 1,233 categories from the ACM CCS tree. We establish strong baselines for HMLTC and propose a multi-task learning approach for topic classification with keyword labeling as an auxiliary task. Our best model achieves a Macro-F1 score of 34.57% which shows that this dataset provides significant research opportunities on hierarchical scientific topic classification. We make our dataset and code available on Github.Comment: Accepted in EMNLP 2022 main conferenc

    Learning to Infer from Unlabeled Data: A Semi-supervised Learning Approach for Robust Natural Language Inference

    Full text link
    Natural Language Inference (NLI) or Recognizing Textual Entailment (RTE) aims at predicting the relation between a pair of sentences (premise and hypothesis) as entailment, contradiction or semantic independence. Although deep learning models have shown promising performance for NLI in recent years, they rely on large scale expensive human-annotated datasets. Semi-supervised learning (SSL) is a popular technique for reducing the reliance on human annotation by leveraging unlabeled data for training. However, despite its substantial success on single sentence classification tasks where the challenge in making use of unlabeled data is to assign "good enough" pseudo-labels, for NLI tasks, the nature of unlabeled data is more complex: one of the sentences in the pair (usually the hypothesis) along with the class label are missing from the data and require human annotations, which makes SSL for NLI more challenging. In this paper, we propose a novel way to incorporate unlabeled data in SSL for NLI where we use a conditional language model, BART to generate the hypotheses for the unlabeled sentences (used as premises). Our experiments show that our SSL framework successfully exploits unlabeled data and substantially improves the performance of four NLI datasets in low-resource settings. We release our code at: https://github.com/msadat3/SSL_for_NLI.Comment: Accepted in EMNLP 2022 (Findings

    MarginMatch: Improving Semi-Supervised Learning with Pseudo-Margins

    Full text link
    We introduce MarginMatch, a new SSL approach combining consistency regularization and pseudo-labeling, with its main novelty arising from the use of unlabeled data training dynamics to measure pseudo-label quality. Instead of using only the model's confidence on an unlabeled example at an arbitrary iteration to decide if the example should be masked or not, MarginMatch also analyzes the behavior of the model on the pseudo-labeled examples as the training progresses, to ensure low quality predictions are masked out. MarginMatch brings substantial improvements on four vision benchmarks in low data regimes and on two large-scale datasets, emphasizing the importance of enforcing high-quality pseudo-labels. Notably, we obtain an improvement in error rate over the state-of-the-art of 3.25% on CIFAR-100 with only 25 labels per class and of 3.78% on STL-10 using as few as 4 labels per class. We make our code available at https://github.com/tsosea2/MarginMatch

    Dynamic Deep Multi-modal Fusion for Image Privacy Prediction

    Full text link
    With millions of images that are shared online on social networking sites, effective methods for image privacy prediction are highly needed. In this paper, we propose an approach for fusing object, scene context, and image tags modalities derived from convolutional neural networks for accurately predicting the privacy of images shared online. Specifically, our approach identifies the set of most competent modalities on the fly, according to each new target image whose privacy has to be predicted. The approach considers three stages to predict the privacy of a target image, wherein we first identify the neighborhood images that are visually similar and/or have similar sensitive content as the target image. Then, we estimate the competence of the modalities based on the neighborhood images. Finally, we fuse the decisions of the most competent modalities and predict the privacy label for the target image. Experimental results show that our approach predicts the sensitive (or private) content more accurately than the models trained on individual modalities (object, scene, and tags) and prior privacy prediction works. Also, our approach outperforms strong baselines, that train meta-classifiers to obtain an optimal combination of modalities.Comment: Accepted by The Web Conference (WWW) 201
    • …
    corecore