10,752 research outputs found

    Two tone response of radiofrequency signals using the voltage output of a Superconducting Quantum Interference Filter

    Full text link
    In the presence of weak time harmonic electromagnetic fields, Superconducting Quantum Interference Filters (SQIFs) show the typical behavior of non linear mixers. The SQIFs are manufactured from high-T_c grain boundary Josephson junctions and operated in active microcooler. The dependence of dc voltage output V_dc vs. static external magnetic field B is non-periodic and consists of a well pronounced unique dip at zero field, with marginal side modulations at higher fields. We have successfully exploited the parabolic shape of the voltage dip around B=0 to mix quadratically two external time harmonic rf-signals, at frequencies f_1 and f_2 below the Josephson frequency f_J, and detect the corresponding mixing signal at f_1-f_2. When the mixing takes place on the SQIF current-voltage characteristics the component at 2f_2 - f_1 is present. The experiments suggest potential applications of a SQIF as a non-linear mixing device, capable to operate at frequencies from dc to few GHz with a large dynamic range.Comment: 10 pages, 3 Figures, submitted to J. Supercond. (as proceeding of the HTSHFF Symposium, June 2006, Cardiff

    Synchronization in fiber lasers arrays

    Full text link
    We consider an array of fiber lasers coupled through the nearest neighbors. The model is a generalized nonlinear Schroedinger equation where the usual Laplacian is replaced by the graph Laplacian. For a graph with no symmetries, we show that there is no resonant transfer of energy between the different eigenmodes. We illustrate this and confirm our result on a simple graph. This shows that arrays of fiber ring lasers can be made temporally coherent

    Fractional Fokker-Planck Equation for Ultraslow Kinetics

    Full text link
    Several classes of physical systems exhibit ultraslow diffusion for which the mean squared displacement at long times grows as a power of the logarithm of time ("strong anomaly") and share the interesting property that the probability distribution of particle's position at long times is a double-sided exponential. We show that such behaviors can be adequately described by a distributed-order fractional Fokker-Planck equations with a power-law weighting-function. We discuss the equations and the properties of their solutions, and connect this description with a scheme based on continuous-time random walks

    The seesaw portal in testable models of neutrino masses

    Full text link
    A Standard Model extension with two Majorana neutrinos can explain the measured neutrino masses and mixings, and also account for the matter-antimatter asymmetry in a region of parameter space that could be testable in future experiments. The testability of the model relies to some extent on its minimality. In this paper we address the possibility that the model might be extended by extra generic new physics which we parametrize in terms of a low-energy effective theory. We consider the effects of the operators of the lowest dimensionality, d=5d=5, and evaluate the upper bounds on the coefficients so that the predictions of the minimal model are robust. One of the operators gives a new production mechanism for the heavy neutrinos at LHC via higgs decays. The higgs can decay to a pair of such neutrinos that, being long-lived, leave a powerful signal of two displaced vertices. We estimate the LHC reach to this process.Comment: 19 pages, 11 figure

    Detecting the Stimulated Decay of Axions at Radio Frequencies

    Get PDF
    Assuming axion-like particles account for the entirety of the dark matter in the Universe, we study the possibility of detecting their decay into photons at radio frequencies. We discuss different astrophysical targets, such as dwarf spheroidal galaxies, the Galactic Center and halo, and galaxy clusters. The presence of an ambient radiation field leads to a stimulated enhancement of the decay rate; depending on the environment and the mass of the axion, the effect of stimulated emission may amplify the photon flux by serval orders of magnitude. For axion-photon couplings allowed by astrophysical and laboratory constraints(and possibly favored by stellar cooling), we find the signal to be within the reach of next-generation radio telescopes such as the Square Kilometer Array.Comment: Minor changes, references added, matches published versio
    • …
    corecore