8,805 research outputs found

    Nuclear DNA contents, rDNAs, and karyotype evolution in subgenus Vicia: III. The heterogeneous section Hypechusa.

    Get PDF
    Abstract: Nuclear DNA contents, automated karyotype analyses, and sequences of internal transcribed spacers from ribosomal genes have been determined in the species belonging to section Hypechusa of the sub-genus Vicia. Karyomorphological results and phylogenetic data generated from the comparison of rDNA ( genes coding for rRNA) sequences showed that sect. Hypechusa is not monophyletic; however, some monophyletic units are apparent ( one including Vicia galeata, V. hyrcanica, V. noeana, and V. tigridis, another including V. assyriaca, V. hybrida, V. melanops, V. mollis, and V. sericocarpa), which partly correspond to morphology-based infrasectional groups. The relationships among these species and the species in sections Faba, Narbonensis, Bithynicae, and Peregrinae have been also investigated. Nuclear DNA contents, automated karyotype analyses, and sequences of internal transcribed spacers from ribosomal genes have been determined in the species belonging to section Hypechusa of the subgenus Vicia. Karyomorphological results and phylogenetic data generated from the comparison of rDNA (genes coding for rRNA) sequences showed that sect. Hypechusa is not monophyletic; however, some monophyletic units are apparent (one including Vicia galeata, V. hyrcanica, V. noeana, and V. tigridis, another including V. assyriaca, V. hybrida, V. melanops, V. mollis, and V. sericocarpa), which partly correspond to morphology-based infrasectional groups. The relationships among these species and the species in sections Faba, Narbonensis, Bithynicae, and Peregrinae have been also investigated

    Triggering the Formation of Halo Globular Clusters with Galaxy Outflows

    Full text link
    We investigate the interactions of high-redshift galaxy outflows with low-mass virialized (Tvir < 10,000K) clouds of primordial composition. While atomic cooling allows star formation in larger primordial objects, such "minihalos" are generally unable to form stars by themselves. However, the large population of high-redshift starburst galaxies may have induced widespread star formation in these objects, via shocks that caused intense cooling both through nonequilibrium H2 formation and metal-line emission. Using a simple analytic model, we show that the resulting star clusters naturally reproduce three key features of the observed population of halo globular clusters (GCs). First, the 10,000 K maximum virial temperature corresponds to the ~ 10^6 solar mass upper limit on the stellar mass of GCs. Secondly, the momentum imparted in such interactions is sufficient to strip the gas from its associated dark matter halo, explaining why GCs do not reside in dark matter potential wells. Finally, the mixing of ejected metals into the primordial gas is able to explain the ~ 0.1 dex homogeneity of stellar metallicities within a given GC, while at the same time allowing for a large spread in metallicity between different clusters. To study this possibility in detail, we use a simple 1D numerical model of turbulence transport to simulate mixing in cloud-outflow interactions. We find that as the shock shears across the side of the cloud, Kelvin-Helmholtz instabilities arise, which cause mixing of enriched material into > 20% of the cloud. Such estimates ignore the likely presence of large-scale vortices, however, which would further enhance turbulence generation. Thus quantitative mixing predictions must await more detailed numerical studies.Comment: 21 pages, 11 figures, Apj in pres

    Fourier mode dynamics for the nonlinear Schroedinger equation in one-dimensional bounded domains

    Full text link
    We analyze the 1D focusing nonlinear Schr\"{o}dinger equation in a finite interval with homogeneous Dirichlet or Neumann boundary conditions. There are two main dynamics, the collapse which is very fast and a slow cascade of Fourier modes. For the cubic nonlinearity the calculations show no long term energy exchange between Fourier modes as opposed to higher nonlinearities. This slow dynamics is explained by fairly simple amplitude equations for the resonant Fourier modes. Their solutions are well behaved so filtering high frequencies prevents collapse. Finally these equations elucidate the unique role of the zero mode for the Neumann boundary conditions

    Creep, Relaxation and Viscosity Properties for Basic Fractional Models in Rheology

    Full text link
    The purpose of this paper is twofold: from one side we provide a general survey to the viscoelastic models constructed via fractional calculus and from the other side we intend to analyze the basic fractional models as far as their creep, relaxation and viscosity properties are considered. The basic models are those that generalize via derivatives of fractional order the classical mechanical models characterized by two, three and four parameters, that we refer to as Kelvin-Voigt, Maxwell, Zener, anti-Zener and Burgers. For each fractional model we provide plots of the creep compliance, relaxation modulus and effective viscosity in non dimensional form in terms of a suitable time scale for different values of the order of fractional derivative. We also discuss the role of the order of fractional derivative in modifying the properties of the classical models.Comment: 41 pages, 8 figure

    Exponentially tapered Josephson flux-flow oscillator

    Get PDF

    Raman solitons in transient SRS

    Full text link
    We report the observation of Raman solitons on numerical simulations of transient stimulated Raman scattering (TSRS) with small group velocity dispersion. The theory proceeds with the inverse scattering transform (IST) for initial-boundary value problems and it is shown that the explicit theoretical solution obtained by IST for a semi-infinite medium fits strikingly well the numerical solution for a finite medium. We understand this from the rapid decrease of the medium dynamical variable (the potential of the scattering theory). The spectral transform reflection coefficient can be computed directly from the values of the input and output fields and this allows to see the generation of the Raman solitons from the numerical solution. We confirm the presence of these nonlinear modes in the medium dynamical variable by the use of a discrete spectral analysis.Comment: LaTex file, to appear in Inverse Problem
    corecore