521 research outputs found

    Effective Theory of Magnetization Plateaux in the Shastry-Sutherland Lattice

    Full text link
    We use the non-perturbative Contractor-Renormalization method (CORE) in order to derive an effective model for triplet excitations on the Shastry-Sutherland lattice. For strong enough magnetic fields, various magnetization plateaux are observed, e.g. at 1/8, 1/4, 1/3 of the saturation, as found experimentally in a related compound. Moreover, other stable plateaux are found at 1/9, 1/6 or 2/9. We give a critical review of previous works and try to resolve some apparent inconsistencies between various theoretical approaches.Comment: published version with minor change

    Numerical Contractor Renormalization Method for Quantum Spin Models

    Get PDF
    We demonstrate the utility of the numerical Contractor Renormalization (CORE) method for quantum spin systems by studying one and two dimensional model cases. Our approach consists of two steps: (i) building an effective Hamiltonian with longer ranged interactions using the CORE algorithm and (ii) solving this new model numerically on finite clusters by exact diagonalization. This approach, giving complementary information to analytical treatments of the CORE Hamiltonian, can be used as a semi-quantitative numerical method. For ladder type geometries, we explicitely check the accuracy of the effective models by increasing the range of the effective interactions. In two dimensions we consider the plaquette lattice and the kagome lattice as non-trivial test cases for the numerical CORE method. On the plaquette lattice we have an excellent description of the system in both the disordered and the ordered phases, thereby showing that the CORE method is able to resolve quantum phase transitions. On the kagome lattice we find that the previously proposed twofold degenerate S=1/2 basis can account for a large number of phenomena of the spin 1/2 kagome system. For spin 3/2 however this basis does not seem to be sufficient anymore. In general we are able to simulate system sizes which correspond to an 8x8 lattice for the plaquette lattice or a 48-site kagome lattice, which are beyond the possibilities of a standard exact diagonalization approach.Comment: 15 page

    Recent progress in the truncated Lanczos method : application to hole-doped spin ladders

    Full text link
    The truncated Lanczos method using a variational scheme based on Hilbert space reduction as well as a local basis change is re-examined. The energy is extrapolated as a power law function of the Hamiltonian variance. This systematic extrapolation procedure is tested quantitatively on the two-leg t-J ladder with two holes. For this purpose, we have carried out calculations of the spin gap and of the pair dispersion up to size 2x15.Comment: 5 pages, 4 included eps figures, submitted to Phys. Rev. B; revised versio

    Local renormalization method for random systems

    Full text link
    In this paper, we introduce a real-space renormalization transformation for random spin systems on 2D lattices. The general method is formulated for random systems and results from merging two well known real space renormalization techniques, namely the strong disorder renormalization technique (SDRT) and the contractor renormalization (CORE). We analyze the performance of the method on the 2D random transverse field Ising model (RTFIM).Comment: 12 pages, 13 figures. Submitted to the Special Issue on "Quantum Information and Many-Body Theory", New Journal of Physics. Editors: M.B. Plenio, J. Eiser
    • …
    corecore