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Infinite projected entangled-pair states (iPEPS) have been introduced to accurately describe many-body wave
functions on two-dimensional lattices. In this context, two aspects are crucial: the systematic improvement
of the Ansatz by the optimization of its building blocks, i.e., tensors characterized by bond dimension D,
and the extrapolation scheme to reach the “thermodynamic” limit D → ∞. Recent advances in variational
optimization and scaling based on correlation lengths demonstrated the ability of iPEPS to capture phases
with spontaneously broken continuous symmetry such as the antiferromagnetic (Néel) one with high fidelity,
in addition to valence-bond solids which are already well described by finite-D iPEPS. In contrast, systems
in the vicinity of continuous quantum phase transitions still present a challenge for iPEPS, especially when
non-Abelian symmetries are involved. Here, we consider the iPEPS Ansatz to describe the continuous transition
between the (gapless) antiferromagnet and the (gapped) paramagnet that exists in the S = 1/2 Heisenberg model
on coupled two-leg ladders. In particular, we show how accurate iPEPS results can be obtained down to a
narrow interval around criticality and analyze the scaling of the order parameter in the Néel phase in a spatially
anisotropic situation.

DOI: 10.1103/PhysRevB.106.125154

I. INTRODUCTION

One of the most challenging problems in condensed mat-
ter theory is to obtain sufficiently accurate approximations
of the ground state and low-energy excitations of generic
many-body Hamiltonians. For this reason, several numerical
approaches have been devised in the last 30 years, including
density-matrix renormalization group (DMRG) [1], dynami-
cal mean-field theory [2], and quantum Monte Carlo (QMC)
techniques [3]. In particular, DMRG has become the refer-
ence method to address strongly correlated systems in one
spatial dimension. Its reformulation by using the so-called
matrix-product states [4,5] has led to straightforward general-
izations to two-dimensional systems; in this regard, projected
entangled-pair states (PEPS) [6,7] represent a promising com-
putational framework to obtain accurate results on generic
lattice models. Within this approach, the ground-state wave
function is represented by means of local tensors, typically
assigned the sites of the underlying lattice. These tensors have
two kinds of indices: a single physical index specifying the
local physical configuration (e.g., Sz = ±1/2 in a spin-1/2
model) and a collection of auxiliary bond indices (whose num-
ber, usually, equals the coordination number of the lattice),
each one having bond dimension D. The bond indices on
nearest-neighbor sites are contracted together, thus defining
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a tensor network. The accuracy of these wave functions can
be systematically improved by raising the bond dimension.
Furthermore, infinite systems may be considered by embed-
ding the tensor network within a suitable environment. Such
tensor networks, dubbed iPEPS, are the main focus of this
work.

In the last decade, several algorithms to optimize iPEPS
Ansätze have been developed and used to address challenging
problems in different correlated systems, ranging from the
characterization of unconventional states of matter (e.g., spin
liquids in the highly frustrated spin model) to the competition
between stripes and superconductivity in Hubbard or t-J mod-
els. For example, the ground-state of the spin- 1

2 Heisenberg
model has been analyzed on the kagome [8] and Shastry-
Sutherland [9] lattices. Hamiltonians with an enlarged SU (N )
“spin” symmetry have been also considered, to assess both
magnetically ordered and disordered phases [10,11]. In this
regard, particular attention has been devoted to the possibility
to stabilize chiral spin liquids [12,13]. As far as electronic
models are concerned, the evidence in favor of stripes has
been pushed for t-J [14] and Hubbard [15] models, in the
vicinity of the hole doping δ = 1/8.

The iPEPS Ansatz is particularly suited to describe phases
with a gap in the excitation spectrum. In this case, very
accurate or even exact ground-state wave function can be
obtained already for finite (and often relatively small) bond
dimension D. Instead, gapless phases (most notably, magnet-
ically ordered phases with Goldstone modes, but also states
corresponding to quantum critical points) can be captured
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only approximately, with the exact description obtained in the
limit D → ∞. This is in stark contrast with what happens in
one spatial dimension, where tensor-network states, equipped
with an appropriate scaling theory, may capture very well
gapless phases and critical phenomena [16–19]. Recently,
progress in the iPEPS analysis of critical and/or gapless sys-
tems has been made thanks to two key developments. The
first one is the introduction of optimization techniques, based
either on diagram summations [20,21] or the so-called au-
tomatic differentiation [22], which substantially improve the
accuracy with respect to the commonly used imaginary time
evolution methods. The second one is the development of
finite-correlation-length scaling (FCLS) [23,24] that allowed
leveraging the well-established finite-size scaling approach
to iPEPS states. In effect the accuracy of thermodynamic
estimates based on finite-D iPEPS calculations can be con-
siderably improved. The efficiency of these advances was
recently demonstrated on a paradigmatic problem of the spin-
1
2 Heisenberg J1-J2 model on a square lattice by estimating
the magnetization curve within the Néel phase, even in the
vicinity of the transition to the quantum spin-liquid state [25].

In this work, we pursue the idea of describing a continuous
phase transition within the iPEPS formalism. In particular, as
for the J1-J2 model, we focus on a case where the Néel order
is melted by quantum fluctuations, namely a two-dimensional
system of coupled spin-1/2 Heisenberg ladders defined by

H = J
∑

R

SR · SR+x̂ +
∑

R

JRSR · SR+ŷ, (1)

where SR = (Sx
R, Sy

R, Sz
R) is the S = 1/2 operator on the site

R = (x, y) of a square lattice, x̂ and ŷ are unit vectors in x
and y directions, and JR = J or JR = αJ , depending on the
parity of y. By varying α, this model interpolates between the
Heisenberg model on the square lattice at α = 1 and a system
of decoupled two-leg ladders at α = 0. In the following, we
will take J as the energy scale. Owing to the absence of the
sign problem, this system can be studied by unbiased QMC
techniques and, therefore, offers an excellent benchmark for
the accuracy of iPEPS to describe a nontrivial quantum phase
transition, e.g., beyond the simplest case of the Ising model in
transverse field. Indeed, the Hamiltonian (1) displays a quan-
tum critical point at αc = 0.314 07(5), separating a gapless
antiferromagnet and a gapped paramagnet [26]. The critical
exponents are compatible with the ones of the classical three-
dimensional O(3) Heisenberg model, as expected.

A recent iPEPS investigation of this Heisenberg model
[27] highlighted the difficulties faced by the unrestricted op-
timizations of iPEPS tensors across the phase transition. In
fact, due to the unbroken SU (2) symmetry in the paramag-
netic side, strong finite-D effects are present, thus impeding
a systematic analysis. Moreover, the optimization procedure
is problematic also within the antiferromagnetic phase, where
the expected U (1) symmetry around the direction of the stag-
gered magnetization is usually broken. In this work, we want
to constrain the iPEPS Ansatz by imposing this U (1) symme-
try, thus limiting finite-D effect, and optimize such symmetric
tensors with the automatic differentiation [22]. In addition, we
extend the FCLS analysis [23,24] in situations with a spatial
anisotropy, due to the presence of two length scales, since

the correlations along the spatial x and y directions will be
generically different in the ground state of Eq. (1). These
two improvements allow us to get accurate results for the
antiferromagnetic order parameter up to the critical point, as
confirmed by a direct comparison with QMC calculations.
Finally, we included an external staggered magnetic field in
the Hamiltonian (1), which allows us to inspect the response
in the order parameter, even very close to the critical point.

II. METHODS

Here, we briefly describe the structure of the iPEPS Ansatz
that is used to investigate the Hamiltonian (1). To account for
both the antiferromagnetic order in the gapless regime and the
short-range valence-bond correlations in the gapped one, we
consider four rank-5 tensors t = {a, b, c, d}, each one with
a physical index s (with dimension 2, suitable for S = 1/2
degrees of freedom) and four auxiliary indices u, l, d, r (with
dimension D). These tensors are arranged in a 2 × 2 unit cell
to tile the square lattice:

(2)

where black lines represent physical indices and grey lines
(contracted) auxiliary indices.

Observables are obtained by computing effective envi-
ronments with the corner-transfer matrix (CTM) method,
generalized for extended unit cells [14]. The CTM method
approximates the corners and half-rows/columns of the in-
finite tensor network, arising when computing expectation
values, by a set of finite tensors {C, T } associated with each
nonequivalent site in the unit cell. The corner tensors {C} have
size χ × χ and half-row/column transfer tensors {T } have
size D2 × χ × χ , χ being the environment dimension. These
environment tensors are then used to construct approximate
reduced density matrices of finite subsystems, i.e., for nearest-
neighbor sites

(3)

where A, B, C, and D are double-layer tensors obtained
by contracting the physical index, i.e., A(uu′ )(ll ′ )(dd ′ )(rr′ ) =∑

s as
uldra∗s

u′l ′d ′r′ , while sites with open physical indices,
Ass′

(uu′ )(ll ′ )(dd ′ )(rr′ ) = as
uldra∗s

u′l ′d ′r′ , have diagonal black lines. In
addition, correlation lengths of two-point functions can be
computed from the spectrum of D2χ2 × D2χ2 transfer ma-
trices [28], such as the one above highlighted in blue once
the physical indices are contracted. The CTM environments
are systematically improved by increasing χ , with the exact
observables recovered in the χ → ∞ limit.
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The symmetries of the Hamiltonian allow us to further
specialize the Ansatz. The gapped phase retains the full SU (2)
spin symmetry; by contrast, the gapless phase partially breaks
this spin symmetry, leading to a finite collinear magnetization
and a residual U (1) symmetry about it. Therefore, we impose
an explicit U (1) spin symmetry on the tensors. This can be
achieved by associating integer “charges” to the two physical
spin-1/2 components and the D virtual degrees of freedom
(on each of the bond indices) [29]. To preserve point-group
symmetries of the underlying lattice, a straightforward choice
is to take the same charges on all the bond indices that are
equivalent under the symmetries (e.g., the choice made in
Ref. [27] for a lattice with C4v symmetry). Here, we do not
want to impose any spatial symmetry within the 2 × 2 unit
cell, which allows for the existence of different charges on
different indices. Thus, each of the four tensors will possess
a set of charges �vγ

j = (v0, . . . , vD−1) with γ = a, b, c, d and
j = u, l, d, r. Instead, the same charges �u = (u↑, u↓) for the
physical indices are taken for all tensors. Then, the U (1)
symmetry is realized by enforcing a selection rule for the
nonzero elements of the tensors t s

uldr :

us + vγ
u + v

γ

l + v
γ

d + vγ
r = N, (4)

where, without loss of generality, we choose the case with
N = 0 to work with invariant tensors. From a practical point
of view, one possibility of identifying U (1) charges (for the
best variational states) is to perform imaginary-time evolu-
tion by using a two-site simple-update scheme [30], starting
from product states with U (1) symmetry. Remarkably, this
approach does not lead to substantial improvements (in terms
of physical quantities such as energy or magnetization) with
respect to the charges obtained from the unrestricted opti-
mizations of single-site iPEPS Ansatz with the C4v lattice
symmetry in the Heisenberg model with α = 1 [25]; see Ap-
pendix A. The use of these charges allows us to improve
numerical efficiency. Tensor elements respecting the selec-
tion rule can be arranged into blocks, leading to economic
block-sparse representation. For a detailed treatment of tensor
networks with U (1) symmetry and linear algebra with block-
sparse tensors, see Ref. [29].

The optimizations of the iPEPS Ansatz (2) with specified
U (1) charges are performed by the direct minimization of the
energy:

(i) The tensors a, b, c, and d are initialized and the en-
vironment tensors {C, T } are computed, to build the reduced
density matrices.

(ii) The energy per site e is computed by evaluating all
eight distinct nearest-neighbor terms of Hamiltonian (1) in the
2 × 2 unit cell.

(iii) The gradients ∂e
∂a , ∂e

∂b ,
∂e
∂c ,

∂e
∂d are evaluated by auto-

matic differentiation of the entire step (ii).
(iv) The elements of tensors a, b, c, and d are then updated

with the L-BFGS algorithm augmented with line search. The
new environment tensors {C, T } are computed. The optimiza-
tion continues from step (ii) until the desired convergence in
energy has been reached.

For details of the L-BFGS algorithm, which improves upon
the simple steepest descent method, and backtracking line
search used in this work, see Ref. [31]. Importantly, once

the charges are defined, the gradient optimization changes the
tensor elements without mixing different symmetry-allowed
blocks. The implementation of linear tensor algebra for
Abelian-symmetric tensors is provided by the open-source
library YAST [32], and the iPEPS algorithms built on top of
it are available in the PEPS-TORCH library [33].

III. RESULTS

Let us now show the results obtained within the optimiza-
tion of the iPEPS Ansätze. The optimizations for D = 3, 4,
5, and 6 are performed with environment dimensions up to
χ = 72, 96, 100, and 108, respectively. For each value of D
the observables are then extrapolated to χ → ∞. These finite-
χ corrections are generally small, at most O(10−5) for energy
and magnetization at D = 6 and α → 1, but can be sizable for
correlation lengths, e.g., about 10% of the extrapolated value.
Afterward, we perform FCLS analysis to obtain both D → ∞
and χ → ∞ thermodynamic estimates.

To perform a careful comparison with QMC calculations
(which are numerically exact, since the spin model does not
suffer from the sign problem), we apply the stochastic se-
ries expansion method [34] and perform extrapolations by
decreasing the temperature (to reach ground-state properties)
and increasing the size of the cluster (to reach the thermo-
dynamic limit). Most of the QMC calculations were done on
L × L lattices with periodic boundary conditions, at tempera-
ture T = 1/(2L), by using the ALPS libraries [35,36].

A. Phase diagram

In Fig. 1, we report the energy per site e and the staggered
magnetization m2 (averaged over the 2 × 2 unit cell), for
different values of α across the quantum critical point. The
outcome shows that for a small bond dimension (for D � 2 in
the antiferromagnetic phase and D � 3 in the paramagnetic
one) the accuracy is quite poor in both phases. However,
once the bond dimension becomes large enough to capture
the entanglement structure of the ground state, the tensor
network provides an excellent variational description not only
in the paramagnetic phase, where the iPEPS parametrization is
particularly suitable, but also within the magnetically ordered
phase. The accuracy of the ground-state energy is exempli-
fied by showing the relative error with respect to the value
eQMC , obtained within the QMC approach (extrapolated in the
thermodynamic limit). Indeed, the quantity �e/|eQMC |, with
�e = |e − eQMC | is vanishing within the statistical errors; see
Fig. 1. Most importantly, the magnetization curves for finite
values of the bond dimension D follow the QMC data faith-
fully in the bulk of each phase, still overestimating the order
parameter close to the critical point. We would like to mention
that the present QMC results allow us to locate the critical
point at αc = 0.314 67(1), which is slightly different from the
previous estimate αc = 0.314 07(5) [26] (see Appendix B).

B. Finite-correlation-length scaling

Obtaining accurate and reliable estimates of the observ-
ables (e.g., the energy per site or the staggered magneti-
zation) within iPEPS Ansätze represents an important issue
that has been addressed since their definition. Recently, a
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FIG. 1. Energy per site (upper panel) and staggered magnetiza-
tion (lower panel) for optimized iPEPS with U (1) symmetry and
2 × 2 unit cell. The results for D = 3, . . . , 6 are reported (except the
magnetization for D = 3, which is too large), as well as the ones
obtained with the FCLS extrapolation; see text. In addition, QMC
results are also shown for the thermodynamic extrapolation. The
inset in the upper panel shows the relative error of the iPEPS energies
(with FCLS extrapolations) with respect to the QMC ones (with
thermodynamic extrapolations). The inset in the bottom panel gives
a sketch of the superexchanges in Hamiltonian (1), where intraladder
J (interladder αJ) couplings are denoted by black solid (gray dashed)
lines.

progress has been made in this direction for magnetic states
that break a continuous symmetry (e.g., the antiferromagnetic
one in the Heisenberg model). In this case, the presence of
gapless modes induces a diverging correlation length. When
working on finite clusters, as in standard QMC approaches,
this fact translates into well-defined size-scaling laws of the
physical quantities [37,38]. Instead, within iPEPS, we directly
work in the thermodynamic limit (that is mimicked by the
embedding procedure) and, therefore, it is not possible to
straightforwardly apply the same scaling laws; still, the cor-
relation length ξ is finite for any finite value of the bond
dimension D and diverges with D → ∞. As a result, it has
been suggested [23,24] that the FCLS analysis can be defined
in terms of ξ instead of the cluster size as

e(ξ ) = e0 + a

ξ 3
+ O

(
1

ξ 4

)
, (5)

m2(ξ ) = m2
0 + b

ξ
+ O

(
1

ξ 2

)
, (6)

FIG. 2. FCLS extrapolations for the energy e, by using both
horizontal (ξx , full symbols and lines) and vertical (ξy, empty sym-
bols and dashed lines) correlation lengths, for a few values of the
inter-ladder couplings α. The symbols correspond to iPEPS with
D = 3 (diamonds), D = 4 (squares), D = 5 (triangles), and D = 6
(pentagons). The colors follow the α color scheme of Fig. 3.

where a and b are suitable constants. The system we are
interested in, i.e., the Heisenberg model on coupled two-leg
ladders, presents a complication, as it breaks the π/2-
rotational symmetry for α 	= 1, leading to two distinct length
scales. Within finite-D iPEPS calculations, we have access
to both of them by looking at the spectrum of the trans-
fer matrices along x (i.e., within ladders) and y (i.e., across
ladders). Thus, we obtain two correlation lengths (ξx and
ξy) and perform FCLS independently for both of them. The
extrapolated values e0 and m2 (as shown in the Fig. 1) do
not depend upon the choice of the direction used to extract
the correlation length, while the parameters a and b depend
on the choice. It must be emphasized that these FCLS rela-
tions are expected to be valid exclusively for a phase with
a spontaneously broken continuous symmetry and Goldstone
modes, where the correlation length diverges with increasing
D. Instead, within the paramagnetic gapped phase, ξ remains
finite in the thermodynamic limit, thus implying that Eqs. (5)
and (6) cannot be applied. The impossibility of fitting the
numerical data for a given α within this scheme is then taken
as evidence that the state is not gapless (antiferromagnetic).
At the quantum critical point, we still expect Eq. (5) to hold,
while the order parameter scaling is replaced with a quantum
critical form m(ξ ) ≈ ξ−�m , with �m the scaling dimension of
the order parameter at the critical point [23].

The results for the energy per site e are reported for selected
values of α in Fig. 2. Within the magnetically ordered phase
(but also close to the quantum critical point), the extrapola-
tions of the FCLS analysis using either ξx or ξy give consistent
values, providing an internal verification of the approach.
Most importantly, the staggered magnetization m2 can be
also extracted for infinite correlation length; see Fig. 3. The
extrapolated results are in very good agreement with QMC
estimates, up to values of the interladder couplings that are
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FIG. 3. FCLS extrapolations for staggered magnetization m2,
by using both vertical (ξy, left part) and horizontal (ξx , right part)
correlation lengths for 0.29 � α � 1. The symbols correspond to
iPEPS with D = 3 (diamonds), D = 4 (squares), D = 5 (triangles),
and D = 6 (pentagons); thermodynamic extrapolations from QMC
data are also reported (stars).

very close to the critical point. Beyond the critical point, the
system develops a gap and thus the FCLS fails to provide
the correct scaling, where correlation lengths remain finite.
Nevertheless, within the paramagnetic regime, finite-D iPEPS
calculations are able to recover accurate results. Indeed, for
α � 0.28, a vanishing magnetization is already obtained with
D = 5. However, upon approaching criticality, i.e., at α = 0.3,
finite-D iPEPS retain a small residual magnetization (at least
up to D = 6). In fact, close to the critical point, the correlation
length far surpasses the values of ξx and ξy that our finite-D
iPEPS can support. Hence, the FCLS analysis can be used
to improve the estimates of the energy. Still, some important
deviations in the scaling laws are clearly visible; see Fig. 3.
Finally, let us remark that the iPEPS optimization in the nar-
row region near criticality is technically difficult due to the
presence of instabilities (see Appendix C).

C. The effect of a staggered magnetic field

In the previous section, we focused on estimating observ-
ables of the ground state of the SU (2)-symmetric Hamiltonian
(1). Here, we explicitly break this symmetry to investigate
the phase transition with a complementary non-symmetric
approach [23,39,40]. In particular, we follow the approach of
Refs. [23,40], which recently used tensor networks to compute
running exponents in critical quantum systems.

To explicitly break the SU (2), we supplement the Hamil-
tonian (1) with an external staggered magnetic field h, which
directly couples to the order parameter:

Hh = H − h
∑

R

(−1)x+ySz
R, (7)

where R = (x, y). Then, for any h 	= 0, the ground state has
a finite correlation length and develops a finite staggered
magnetization m = m(h, α) in response to the staggered field
h. The response for h → 0+ is different within magnetically
ordered or disordered phases. In both cases, the magnetization
is an analytic function of h, with two distinct regimes:

m(α, h) = a(α)h + O(h2) for α < αc, h → 0+, (8)

m(α, h) = m(α, 0) + O(h) for α > αc, h → 0+, (9)

where a(α) is a suitable constant. By contrast, at criticality
(i.e., for α = αc), the magnetization is not analytic and the
response follows a power-law behavior:

m(αc, h) ∝ h1/δ, for h → 0+, (10)

where δ is a critical exponent, which only depends on the
universality class of the phase transition. The best estimate
of δ [within the expected universality class of the classical
three-dimensional O(3) Heisenberg model] is 1/δ = 0.20916
[41].

To probe the system’s response at fixed α, we define the
logarithmic derivative

[1/δ](α, h) = ∂ log m(α, h)

∂ log h
, (11)

which is usually referred to as running exponent. For each
value of h, we optimize the U (1)-symmetric iPEPS Ansatz
and compute the average staggered magnetization m(α, h).
Then, we estimate the logarithmic derivative by using finite
differences. The QMC results are based on a direct improved
estimator for the running exponent; see Ref. [40]. The out-
comes are shown in Fig. 4, where the running exponent and
the correlation length ξx of iPEPS are reported for the three
different regimes (with D = 2, . . . , 6).

In the gapped phase (for α = 0.2), the magnetization is
linear in h (linear response) and, therefore, the running ex-
ponent saturates at 1 for h → 0, as also obtained numerically
from both QMC and iPEPS data (with D � 4). The iPEPS
correlation length saturates for h � 0.005, with small finite-D
corrections. Indeed, in the gapped phase, even finite-D iPEPS
provide a precise description of the system, which is sup-
ported by a direct comparison between iPEPS (with D � 4)
and QMC (for L � 32). The D = 3 iPEPS cannot faithfully
capture the gapped phase at α = 0.2, since it retains finite m
and thus responds more similarly to the Néel phase.

Within the magnetically ordered phase (for α = 0.4), the
magnetization saturates to a finite value and the running expo-
nent goes to zero for h → 0. Indeed, the logarithmic derivative
[1/δ](α, h) has a nonmonotonic behavior, with a broad peak
at intermediate values of the staggered field h. This feature
is correctly captured by iPEPS. QMC calculations also re-
produce the broad peak, even though at small values of h
a huge upturn is present due to size effects; therefore, for
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FIG. 4. U (1)-symmetric iPEPS with D = 3, . . . , 6 in the presence of external staggered field h. Upper panels: Running exponent as a
function of h for the gapped phase with α = 0.2 (left), at criticality α = 0.31407 (middle), and in the Néel phase α = 0.4 (right). The value
of the critical exponent 1/δ is reported at the critical point. QMC results are also reported for comparison, with faded colors marking the data
affected by finite lattice size. Bottom panels: horizontal correlation length ξx as a function of h.

a large enough system size L, the two methods converge to
the same curve for sufficiently large values of the staggered
field h. Here, it seems as though QMC simulations provide an
upper bound of the thermodynamic limit, while iPEPS provide
a lower bound of it. Still, the presence of the broad peak is
robust and appears in the region of h where both D � 5 iPEPS
and L � 32 QMC data are in excellent agreement.

At the critical point α = αc, the running exponent is ex-
pected to converge towards 1/δ = 0.209 16, as mentioned
before. The available iPEPS and QMC calculations (for D � 6
and L � 128, respectively) are still somewhat away from the
saturation regime; however, the numerical data monotonically
increase, without the broad peak in the magnetically ordered
phase. While the validity of the QMC results is limited by
the finite size L, for iPEPS it is limited by the finite correla-
tion length induced by the bond dimension D. Within iPEPS,
as the field h is decreased, the correlation lengths initially
grow, but then flatten out (with large finite-D corrections),
in contrast to the expected diverging behavior of the gapless
regime. From the direct comparison between QMC and iPEPS
data, we can estimate that the iPEPS response for D = 6
gives a faithful estimation of the exact result down to h ≈
10−2. Then, for smaller fields, the running exponent data for
iPEPS and large-L QMC simulations start to deviate as iPEPS
becomes increasingly biased by the induced finite correlation
length.

IV. CONCLUSIONS AND OUTLOOK

The analysis of quantum phase transitions by variational
methods relies on a few aspects: first, a flexible Ansatz for the
ground-state wave function, allowing a description of different

kinds of phases by tuning its parameters; second, a practical
optimization scheme of such parameters to get the best ap-
proximate ground state; finally, a way to analyze the results,
possibly extrapolating to the thermodynamic limit. Here, we
have shown that symmetric tensor networks, when imple-
mented with a variational optimization, allow for an accurate
description of the transition between a gapped paramagnet and
a gapless Néel antiferromagnet, thus overcoming the issues
arising within the imaginary-time evolution approach that was
emphasized in a recent work [27]. The selection of the correct
symmetry structure for tensors by the choice of their charges is
crucial, as they determine the physical properties of the wave
function. Most importantly, once the tensors have been vari-
ationally optimized, our simulations show that the physical
observables, such as the energy or the order parameter, are ro-
bust to small variations of these charges. Although the region
close to the critical point remains a challenge, it is in principle
tractable by increasing the bond dimension D. Already with
data up to D = 6 and FCSL scaling, we could locate the
critical point with an accuracy of about 5%, demonstrating the
applicability of this analysis even in the case of two different
length scales ξx and ξy. Finally, inspired by the recent works
of Refs. [23,40], we have included an external staggered field
h in the Hamiltonian and compared the iPEPS results with the
ones obtained by QMC. Away from the critical point α > αc

(i.e., within the Néel phase) the running exponent [1/δ](α, h)
shows a broad peak at finite field h, indicative of magnetic
order [40]. The robustness of the peak can be established by
locating the inflection point in the growing iPEPS correlation
length as the external field h is decreased. Peaks at fields larger
than inflection point represent genuine features of the system,
while finite-D effects may generate spurious peaks at fields
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smaller than the inflection point. Our findings corroborate
the fact that the analysis of the running exponent is a useful
diagnosis within the antiferromagnetic regime, away from
the critical point. This proof-of-concept analysis shows the
potential of the method put forward in Ref. [40] for future
application of iPEPS, e.g., on questions of the stability of
quantum spin liquids.
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APPENDIX A: COMPARISON AMONG U (1) CLASSES

First, we discuss the preparation of the initial U (1)-
symmetric states for the optimization by imaginary-time
evolution. We consider two scenarios of evolution by starting
from simple U (1)-symmetric product states: a classical Néel
antiferromagnet (NEEL) and a product state of singlets placed
on the rungs of ladders (VBS). The imaginary-time evolutions
were performed by using two-site simple update (SU) with
the second-order Trotter approximation. To track the conver-
gence of SU, we evaluate energy using corner-transfer matrix
environments, with modest environment dimension χ ≈ D2.
Starting with the time step δτ = 0.02, the state is evolved
until an energy increase is observed, in which case the SU
step is not performed and the time step is halved δτ → δτ/2.
The evolution ends once the time step becomes smaller than
δτ = 10−8.

The U (1) structure of the evolved NEEL and VBS states
show slight variations in charges �vγ

j . Moreover, depending
on bond dimension D and α, the charges do not necessarily
respect spatial symmetries of the model (1). For exam-
ple, at D = 5 and 6 the charges on left ( j = l) and right
( j = r) bonds of tensors come out different. Then, we per-
form a further optimization of the NEEL and VBS states
by using gradient descent and compare the resulting physi-
cal observables with the ones obtained from optimal states
with identical charges �vγ

j for all bonds j), here denoted as
U1B class. The results for the energy per site e and the
local magnetization m are shown in Fig. 5. The data for
D = 3 show that optimized VBS states have substantially
worse energies than NEEL and U1B states. Instead, for D >

3, all these states have very similar energies, differences
being at most of order 2 × 10−4. The order parameter dis-
plays a similar behavior. A minor exception is represented
by the D = 4 VBS case, which displays slight breaking of
translation symmetry along the y axis even in the α = 1
limit. In particular, the nearest-neighbor spin-spin correla-

FIG. 5. Left panels: energy per site obtained optimizing NEEL
and VBS states with respect to the one obtained within the U1B
class, i.e., δe = |e(NEEL) − e(U1B)| (circles) and δe = |e(VBS) −
e(U1B)| (squares) for different values of the bond dimension D.
Right panels: magnetization m obtained from NEEL, VBS, and U1B
states. Observables are evaluated at finite χ , i.e., χ = 71 for D = 3,
χ = 64 for D = 4, χ = 50 for D = 5, and χ = 72.

tions show a staggered pattern with 〈�Sx,y · �Sx,y+1〉 − 〈�Sx,y+1 ·
�Sx,y+2〉 ≈ 3 × 10−4. Overall, the SU-evolved states provide
reasonablly accurate initial states for the variational op-
timization of U (1)-symmetric iPEPS. Irrespective of the
differences in the U (1) charges, the final variational min-
ima for different classes give quantitatively similar physical
pictures.

APPENDIX B: SIZE SCALING ANALYSIS OF THE
TRANSITION BY THE QMC TECHNIQUE

Here, we provide some standard details on locating the
transition point αc from QMC simulations. To estimate αc, we
have computed the spin stiffness ρs, defined using the winding
number:

ρs = T

2

〈∑
i

(
W x

i

)2 + (
W y

i

)2

〉
(B1)
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FIG. 6. QMC results for the scaling analysis of the spin stiffness
ρs as a function of α for system with Lx = Ly (upper panel) and Lx =
2Ly (lower panel). The temperature has been chosen as T = 1/(2Lx )
to ensure convergence to the ground-state properties. The vertical
black line and shaded area indicate the αc = 0.314 75(10) estimate
and its uncertainty.

where i runs over loops in the space-time SSE configurations
and the brackets denote the Monte Carlo average.

The results for different system sizes Lx × Ly are shown in
Fig. 6. At criticality, the scaled spin stiffness Lxρs is constant
(taking the dynamical exponent z = 1 at the transition), thus
allowing to estimate the location of the transition at αc =
0.314 67(1). Note that the Binder cumulant crossing also leads
to a similar critical value (data not shown). In addition, we
have also checked that data collapse of ρs and magnetization
are compatible with known exponents ν = 0.707 and β =
0.3689.

APPENDIX C: INSTABILITY IN OPTIMIZATION

In the proximity of the critical point, we observed that
performing the line search is crucial to obtain stable vari-
ational optimizations, especially for the cases with D = 5
and 6. In Fig. 7 (upper panel), we show typical cases done
without line search, such that unstable regimes, with an er-
ratic behavior of the energy, are obtained. The same kind of

FIG. 7. Upper panel: example of optimizations without line
search at α = 0.28 (with D = 5 and χ = 75) both with and without
explicit U (1) symmetry. Optimizations are initialized from α = 0.3.
The red line shows the comparison with QMC extrapolation. Lower
panel: difference between thermodynamic estimate of the energy
(χ → ∞ limit) and its minimal value for fixed environment di-
mension χ for optimized U (1) symmetric states. The optimizations
were done for D = 3, 4, 5, and 6 at χopt = 54, 64, 100, and 108,
respectively. In all cases, the line search was employed.

problem appears both in simulations with or without the U (1)
symmetry.

When performing the optimization, we always work at
constant environment bond dimension χopt. The states ob-
tained in the erratic regime can show energies e(χopt ), which
are lower than the reference QMC results. This is possible
because the iPEPS thermodynamic estimate of energy, for
which the variational principle holds, is obtained only in
the limit of χ → ∞. When the line search is employed, it
suppresses the erratic regime as the energy is not allowed to
increase during the course of optimization. In this case, we
asses the severity of this instability by comparing the lowest
energies that are realized in the vicinity of χopt with the energy
obtained from the χ → ∞ limit. The results for D = 3, . . . , 6
and 0.2 � α � 0.4 are shown in Fig. 7 (lower panel). This
behavior resembles overtraining, often encountered in the op-
timization of artificial neural networks, since the variational
optimization of iPEPS does not directly optimize the thermo-
dynamic estimate of energy e(χ → ∞), but only its finite-χ
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approximation. In the previous study of the J1-J2 model (us-
ing highly constrained single-site iPEPS Anstaz [25]), e(χ )
was a monotonically decreasing function already from modest

values of χ . Here, we instead observe that e(χ ) attains shallow
spurious minima, with depth at most O(10−5), compared to
corresponding e(χ → ∞) thermodynamic estimates.
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