917 research outputs found

    Breathers and Raman scattering in a two-leg ladder with staggered Dzialoshinskii-Moriya interaction

    Full text link
    Recent experiments have revealed the role of staggered Dzialoshinskii-Moriya interaction in the magnetized phase of an antiferromagnetic spin 1/2 two-leg ladder compound under a uniform magnetic field. We derive a low energy effective field theory describing a magnetized two-leg ladder with a weak staggered Dzialoshinskii-Moriya interaction. This theory predicts the persistence of the spin gap in the magnetized phase, in contrast to standard two-leg ladders, and the presence of bound states in the excitation spectrum. Such bound states are observable in Raman scattering measurements. These results are then extended to intermediate Dzialoshinskii-Moriya interaction using Exact Diagonalizations.Comment: RevTeX 4, 14 pages, 11 EPS figure

    Competing orders in the generalized Hund chain model at half-filling

    Full text link
    By using a combination of several non-perturbative techniques -- a one-dimensional field theoretical approach together with numerical simulations using density matrix renormalization group -- we present an extensive study of the phase diagram of the generalized Hund model at half-filling. This model encloses the physics of various strongly correlated one-dimensional systems, such as two-leg electronic ladders, ultracold degenerate fermionic gases carrying a large hyperfine spin 3/2, other cold gases like Ytterbium 171 or alkaline-earth condensates. A particular emphasis is laid on the possibility to enumerate and exhaust the eight possible Mott insulating phases by means of a duality approach. We exhibit a one-to-one correspondence between these phases and those of the two-leg Hubbard ladder with interchain hopping. Our results obtained from a weak coupling analysis are in remarkable quantitative agreement with our numerical results carried out at moderate coupling.Comment: 26 pages, 14 figure

    Competing orders in one-dimensional half-filled multicomponent fermionic cold atoms: The Haldane-charge conjecture

    Full text link
    We investigate the nature of the Mott-insulating phases of half-filled 2N-component fermionic cold atoms loaded into a one-dimensional optical lattice. By means of conformal field theory techniques and large-scale DMRG calculations, we show that the phase diagram strongly depends on the parity of NN. First, we single out charged, spin-singlet, degrees of freedom, that carry a pseudo-spin S=N/2{\cal S}=N/2 allowing to formulate a Haldane conjecture: for attractive interactions, we establish the emergence of Haldane insulating phases when NN is even, whereas a metallic behavior is found when NN is odd. We point out that the N=1,2N=1,2 cases do \emph{not} have the generic properties of each family. The metallic phase for NN odd and larger than 1 has a quasi-long range singlet pairing ordering with an interesting edge-state structure. Moreover, the properties of the Haldane insulating phases with even NN further depend on the parity of N/2. In this respect, within the low-energy approach, we argue that the Haldane phases with N/2 even are not topologically protected but equivalent to a topologically trivial insulating phase and thus confirm the recent conjecture put forward by Pollmann {\it et al.} [Pollmann {\it et al.}, arXiv:0909.4059 (2009)].Comment: 25 pages, 20 figure

    Haldane charge conjecture in one-dimensional multicomponent fermionic cold atoms

    Full text link
    A Haldane conjecture is revealed for spin-singlet charge modes in 2N-component fermionic cold atoms loaded into a one-dimensional optical lattice. By means of a low-energy approach and DMRG calculations, we show the emergence of gapless and gapped phases depending on the parity of NN for attractive interactions at half-filling. The analogue of the Haldane phase of the spin-1 Heisenberg chain is stabilized for N=2 with non-local string charge correlation, and pseudo-spin 1/2 edge states. At the heart of this even-odd behavior is the existence of a spin-singlet pseudo-spin N/2N/2 operator which governs the low-energy properties of the model for attractive interactions and gives rise to the Haldane physics.Comment: 4 pages, 4 figure

    Trionic and quartetting phases in one-dimensional multicomponent ultracold fermions

    Full text link
    We investigate the possible formation of a molecular condensate, which might be, for instance, the analogue of the alpha condensate of nuclear physics, in the context of multicomponent cold atoms fermionic systems. A simple paradigmatic model of N-component fermions with contact interactions loaded into a one-dimensional optical lattice is studied by means of low-energy and numerical approaches. For attractive interaction, a quasi-long-range molecular superfluid phase, formed from bound-states made of N fermions, emerges at low density. We show that trionic and quartetting phases, respectively for N=3,4, extend in a large domain of the phase diagram and are robust against small symmetry-breaking perturbations.Comment: Contribution to the SOTANCP 2008 worksho

    Zeeman effect in superconducting two-leg ladders: irrational magnetization plateaus and exceeding the Pauli limit

    Full text link
    The effect of a parallel magnetic field on superconducting two-leg ladders is investigated numerically. The magnetization curve displays an irrational plateau at a magnetization equal to the hole density. Remarkably, its stability is fundamentally connected to the existence of a well-known magnetic resonant mode. Once the zero-field spin gap is suppressed by the field, pairs acquire a finite momentum characteristic of a Fulde-Ferrell-Larkin-Ovchinnikov phase. In addition, S^z=0 triplet superconducting correlations coexist with singlet ones above the irrational plateau. This provides a simple mechanism in which the Pauli limit is exceeded as suggested by recent experiments.Comment: 4 pages, 6 figure

    Recent progress in the truncated Lanczos method : application to hole-doped spin ladders

    Full text link
    The truncated Lanczos method using a variational scheme based on Hilbert space reduction as well as a local basis change is re-examined. The energy is extrapolated as a power law function of the Hamiltonian variance. This systematic extrapolation procedure is tested quantitatively on the two-leg t-J ladder with two holes. For this purpose, we have carried out calculations of the spin gap and of the pair dispersion up to size 2x15.Comment: 5 pages, 4 included eps figures, submitted to Phys. Rev. B; revised versio

    Uterine artery Doppler evaluation in twin pregnancies at 11+0 TO 13+6 weeks of gestation

    Get PDF
    • …
    corecore