1,312 research outputs found

    Contractor-Renormalization approach to frustrated magnets in magnetic field

    Full text link
    We propose to use the Contractor Renormalization (CORE) technique in order to derive effective models for quantum magnets in a magnetic field. CORE is a powerful non-perturbative technique that can reduce the complexity of a given microscopic model by focusing on the low-energy part. We provide a detailed analysis of frustrated spin ladders which have been widely studied in the past: in particular, we discuss how to choose the building block and emphasize the use of their reduced density matrix. With a good choice of basis, CORE is able to reproduce the existence or not of magnetization plateaux in the whole phase diagram contrary to usual perturbation theory. We also address the issue of plateau formation in two-dimensional bilayers and point out the analogy between non-frustrated strongly anisotropic models and frustrated SU(2) ones.Comment: 13 pages, 20 figures; published version with minor change

    Effective Theory of Magnetization Plateaux in the Shastry-Sutherland Lattice

    Full text link
    We use the non-perturbative Contractor-Renormalization method (CORE) in order to derive an effective model for triplet excitations on the Shastry-Sutherland lattice. For strong enough magnetic fields, various magnetization plateaux are observed, e.g. at 1/8, 1/4, 1/3 of the saturation, as found experimentally in a related compound. Moreover, other stable plateaux are found at 1/9, 1/6 or 2/9. We give a critical review of previous works and try to resolve some apparent inconsistencies between various theoretical approaches.Comment: published version with minor change

    Dynamical dimer correlations at bipartite and non-bipartite Rokhsar-Kivelson points

    Full text link
    We determine the dynamical dimer correlation functions of quantum dimer models at the Rokhsar-Kivelson point on the bipartite square and cubic lattices and the non-bipartite triangular lattice. Based on an algorithmic idea by Henley, we simulate a stochastic process of classical dimer configurations in continuous time and perform a stochastic analytical continuation to obtain the dynamical correlations in momentum space and the frequency domain. This approach allows us to observe directly the dispersion relations and the evolution of the spectral intensity within the Brillouin zone beyond the single-mode approximation. On the square lattice, we confirm analytical predictions related to soft modes close to the wavevectors (pi,pi) and (pi,0) and further reveal the existence of shadow bands close to the wavevector (0,0). On the cubic lattice the spectrum is also gapless but here only a single soft mode at (pi,pi,pi) is found, as predicted by the single mode approximation. The soft mode has a quadratic dispersion at very long wavelength, but crosses over to a linear behavior very rapidly. We believe this to be the remnant of the linearly dispersing "photon" of the Coulomb phase. Finally the triangular lattice is in a fully gapped liquid phase where the bottom of the dimer spectrum exhibits a rich structure. At the M point the gap is minimal and the spectral response is dominated by a sharp quasiparticle peak. On the other hand, at the X point the spectral function is much broader. We sketch a possible explanation based on the crossing of the coherent dimer excitations into the two-vison continuum.Comment: 16 pages, 7 figures, published versio

    Three-Component Fermi Gas in a one-dimensional Optical Lattice

    Full text link
    We investigate the effect of the anisotropy between the s-wave scattering lengths of a three-component atomic Fermi gas loaded into a one-dimensional optical lattice. We find four different phases which support trionic instabilities made of bound states of three fermions. These phases distinguish themselves by the relative phases between the 2kFk_F atomic density waves fluctuations of the three species. At small enough densities or strong anisotropies we give further evidences for a decoupling and the stabilization of more conventional BCS phases. Finally our results are discussed in light of a recent experiment on 6^{6}Li atoms.Comment: 4 pages, published version. Experimental discussion has been extende

    Spin nematic phases in models of correlated electron systems: a numerical study

    Full text link
    Strongly interacting systems are known to often spontaneously develop exotic ground states under certain conditions. For instance, spin nematic phases have been discovered in various magnetic models. Such phases, which break spin symmetry but have no net local magnetization, have also been proposed by Nersesyan et al. (J. Phys.: Cond. Matt. 3, 3353 (1991)) in the context of electronic models. We introduce a N-flavor microscopic model that interpolates from the large-N limit, where mean-field is valid and such a nematic phase occurs, to the more realistic N=1 case. By using a sign-free quantum Monte-Carlo, we show the existence of a spin nematic phase (analogous to a spin flux phase) for finite N; when N decreases, quantum fluctuations increase and this phase ultimately disappears in favor of an s-wave superconducting state. We also show that this nematic phase extends up to a finite critical charge doping. Dynamical studies allow us to clarify the Fermi surface property: in the nematic phase at half-filling, it consists of 4 points and the low-energy structure has a Dirac cone-like shape. Under doping, we observe clear signatures of Fermi pockets around these points. This is one of the few examples where numerical simulations show how quantum fluctuations can destroy a large-N phase.Comment: 9 pages, 19 figures. Problem with figures has been fixe

    Bond order wave instabilities in doped frustrated antiferromagnets: "Valence bond solids" at fractional filling

    Full text link
    We explore both analytically and numerically the properties of doped t-J models on a class of highly frustrated lattices, such as the kagome and the pyrochlore lattice. Focussing on a particular sign of the hopping integral and antiferromagnetic exchange, we find a generic symmetry breaking instability towards a twofold degenerate ground state at a fractional filling below half filling. These states show modulated bond strengths and only break lattice symmetries. They can be seen as a generalization of the well-known valence bond solid states to fractional filling.Comment: slightly shortened and reorganized versio

    Semiclassical Approach to Competing Orders in Two-leg Spin Ladder with Ring-Exchange

    Full text link
    We investigate the competition between different orders in the two-leg spin ladder with a ring-exchange interaction by means of a bosonic approach. The latter is defined in terms of spin-1 hardcore bosons which treat the N\'eel and vector chirality order parameters on an equal footing. A semiclassical approach of the resulting model describes the phases of the two-leg spin ladder with a ring-exchange. In particular, we derive the low-energy effective actions which govern the physical properties of the rung-singlet and dominant vector chirality phases. As a by-product of our approach, we reveal the mutual induction phenomenon between spin and chirality with, for instance, the emergence of a vector-chirality phase from the application of a magnetic field in bilayer systems coupled by four-spin exchange interactions.Comment: 15 pages, 9 figure

    Doped two-leg ladder with ring exchange

    Full text link
    The effect of a ring exchange on doped two-leg ladders is investigated combining exact diagonalization (ED) and density matrix renormalization group (DMRG) computations. We focus on the nature and weights of the low energy magnetic excitations and on superconducting pairing. The stability with respect to this cyclic term of a remarkable resonant mode originating from a hole pair-magnon bound state is examined. We also find that, near the zero-doping critical point separating rung-singlet and dimerized phases, doping reopens a spin gap.Comment: 5 pages, 7 figures, to appear in PR

    Effective Spin Couplings in the Mott Insulator of the Honeycomb Lattice Hubbard Model

    Full text link
    Motivated by the recent discovery of a spin liquid phase for the Hubbard model on the honeycomb lattice at half-filling, we apply both perturbative and non-perturbative techniques to derive effective spin Hamiltonians describing the low-energy physics of the Mott-insulating phase of the system. Exact diagonalizations of the so-derived models on small clusters are performed, in order to assess the quality of the effective low-energy theory in the spin-liquid regime. We show that six-spin interactions on the elementary loop of the honeycomb lattice are the dominant sub-leading effective couplings. A minimal spin model is shown to reproduce most of the energetic properties of the Hubbard model on the honeycomb lattice in its spin-liquid phase. Surprisingly, a more elaborate effective low-energy spin model obtained by a systematic graph expansion rather disagrees beyond a certain point with the numerical results for the Hubbard model at intermediate couplings.Comment: 20 pages, 10 figure

    Quantum Critical Scaling of Fidelity Susceptibility

    Full text link
    The behavior of the ground-state fidelity susceptibility in the vicinity of a quantum critical point is investigated. We derive scaling relations describing its singular behavior in the quantum critical regime. Unlike it has been found in previous studies, these relations are solely expressed in terms of conventional critical exponents. We also describe in detail a quantum Monte Carlo scheme that allows for the evaluation of the fidelity susceptibility for a large class of many-body systems and apply it in the study of the quantum phase transition for the transverse-field Ising model on the square lattice. Finite size analysis applied to the so obtained numerical results confirm the validity of our scaling relations. Furthermore, we analyze the properties of a closely related quantity, the ground-state energy's second derivative, that can be numerically evaluated in a particularly efficient way. The usefulness of both quantities as alternative indicators of quantum criticality is examined.Comment: 13 pages, 7 figures. Published versio
    • …
    corecore