Motivated by the recent discovery of a spin liquid phase for the Hubbard
model on the honeycomb lattice at half-filling, we apply both perturbative and
non-perturbative techniques to derive effective spin Hamiltonians describing
the low-energy physics of the Mott-insulating phase of the system. Exact
diagonalizations of the so-derived models on small clusters are performed, in
order to assess the quality of the effective low-energy theory in the
spin-liquid regime. We show that six-spin interactions on the elementary loop
of the honeycomb lattice are the dominant sub-leading effective couplings. A
minimal spin model is shown to reproduce most of the energetic properties of
the Hubbard model on the honeycomb lattice in its spin-liquid phase.
Surprisingly, a more elaborate effective low-energy spin model obtained by a
systematic graph expansion rather disagrees beyond a certain point with the
numerical results for the Hubbard model at intermediate couplings.Comment: 20 pages, 10 figure