887 research outputs found
The Fermion Self-Energy during Inflation
We compute the one loop fermion self-energy for massless Dirac + Einstein in
the presence of a locally de Sitter background. We employ dimensional
regularization and obtain a fully renormalized result by absorbing all
divergences with BPHZ counterterms. An interesting technical aspect of this
computation is the need for a noninvariant counterterm owing to the breaking of
de Sitter invariance by our gauge condition. Our result can be used in the
quantum-corrected Dirac equation to search for inflation-enhanced quantum
effects from gravitons, analogous to those which have been found for massless,
minimally coupled scalars.Comment: 63 pages, 3 figures (uses axodraw.sty), LaTeX 2epsilon. Revised
version (to appear in Classical and Quantum Gravity) corrects some typoes and
contains some new reference
General structure of the graviton self-energy
The graviton self-energy at finite temperature depends on fourteen structure
functions. We show that, in the absence of tadpoles, the gauge invariance of
the effective action imposes three non-linear relations among these functions.
The consequences of such constraints, which must be satisfied by the thermal
graviton self-energy to all orders, are explicitly verified in general linear
gauges to one loop order.Comment: 4 pages, minor corrections of typo
One Loop Graviton Self-Energy In A Locally De Sitter Background
The graviton tadpole has recently been computed at two loops in a locally de
Sitter background. We apply intermediate results of this work to exhibit the
graviton self-energy at one loop. This quantity is interesting both to check
the accuracy of the first calculation and to understand the relaxation effect
it reveals. In the former context we show that the self-energy obeys the
appropriate Ward identity. We also show that its flat space limit agrees with
the flat space result obtained by Capper in what should be the same gauge.Comment: 35 pages, plain TeX, 4 Postscript files, uses psfig.sty, revised June
1996 for publication in Physical Review
Trace Anomaly and Backreaction of the Dynamical Casimir Effect
The Casimir energy for massless scalar field which satisfies priodic boundary
conditions in two-dimensional domain wall background is calculated by making
use of general properties of renormalized stress-tensor. The line element of
domain wall is time dependent, the trace anomaly which is the nonvanishing
for a conformally invariant field after renormalization,
represent the back reaction of the dynamical Casimir effect.Comment: 8 pages, no figures, typos corrected, discussion added, has been
accepted for the publication in GR
QCD Corrections to the Top Decay Mode t \ra \tilde{t} \chi^0
In supersymmetric theories, the top quark can decay into its scalar partner
plus a neutralino, with an appreciable rate. We calculate the QCD
corrections to this decay mode in the minimal supersymmetric extension of the
Standard Model. These corrections can be either positive or negative and
increase logarithmically with the gluino mass. For gluino masses below 1 TeV,
they are at most of the order of ten percent and therefore, well under control.Comment: 15 pages including 4 figs (using psfig.sty). A few typos have been
corrected and some references added. The results for Figs. 3 and 4 are now
presented in the dimensional reduction scheme. Version to appear in Phys.
Rev.
Management and efficacy of intensified insulin therapy starting in outpatients
Diabetic patients under multiple injection insulin therapy (i.e., intensified insulin therapy, IIT) usually start this treatment during hospitalization. We report here on the logistics, efficacy, and safety of IIT, started in outpatients. Over 8 months, 52 type I and type II diabetics were followed up whose insulin regimens consecutively had been changed from conventional therapy to IIT. Two different IIT strategies were compared: free mixtures of regular and intermediate (12 hrs)-acting insulin versus the basal and prandial insulin treatment with preprandial injections of regular insulin, and ultralente (24 hrs-acting) or intermediate insulin for the basal demand. After 8 months HbA1 levels had decreased from 10.6%±2.4% to 8.0%±1.3% (means±SD). There was no difference between the two regimens with respect to metabolic control; but type II patients maintained the lowered HbA1 levels better than type I patients. Only two patients were hospitalized during the follow-up time because of severe hypoglycemia. An increase of body weight due to the diet liberalization during IIT became a problem in one-third of the patients. Our results suggest that outpatient initiation of IIT is safe and efficacious with respect to near-normoglycemic control. Weight control may become a problem in IIT patients
Casimir Effect, Achucarro-Ortiz Black Hole and the Cosmological Constant
We treat the two-dimensional Achucarro-Ortiz black hole (also known as (1+1)
dilatonic black hole) as a Casimir-type system. The stress tensor of a massless
scalar field satisfying Dirichlet boundary conditions on two one-dimensional
"walls" ("Dirichlet walls") is explicitly calculated in three different vacua.
Without employing known regularization techniques, the expression in each
vacuum for the stress tensor is reached by using the Wald's axioms. Finally,
within this asymptotically non-flat gravitational background, it is shown that
the equilibrium of the configurations, obtained by setting Casimir force to
zero, is controlled by the cosmological constant.Comment: 20 pages, LaTeX, minor corrections, comments and clarifications
added, version to appear in Phys. Rev.
Two-Dimensional QCD in the Wu-Mandelstam-Leibbrandt Prescription
We find the exact non-perturbative expression for a simple Wilson loop of
arbitrary shape for U(N) and SU(N) Euclidean or Minkowskian two-dimensional
Yang-Mills theory regulated by the Wu-Mandelstam-Leibbrandt gauge prescription.
The result differs from the standard pure exponential area-law of YM_2, but
still exhibits confinement as well as invariance under area-preserving
diffeomorphisms and generalized axial gauge transformations. We show that the
large N limit is NOT a good approximation to the model at finite N and conclude
that Wu's N=infinity Bethe-Salpeter equation for QCD_2 should have no bound
state solutions. The main significance of our results derives from the
importance of the Wu-Mandelstam-Leibbrandt prescription in higher-dimensional
perturbative gauge theory.Comment: 7 pages, LaTeX, REVTE
A Unified Conformal Model for Fundamental Interactions without Dynamical Higgs Field
A Higgsless model for strong, electro-weak and gravitational interactions is
proposed. This model is based on the local symmetry group SU(3)xSU(2)xU(1)xC
where C is the local conformal symmetry group. The natural minimal conformally
invariant form of total lagrangian is postulated. It contains all Standard
Model fields and gravitational interaction. Using the unitary gauge and the
conformal scale fixing conditions we can eliminate all four real components of
the Higgs doublet in this model. However the masses of vector mesons, leptons
and quarks are automatically generated and are given by the same formulas as in
the conventional Standard Model. The gravitational sector is analyzed and it is
shown that the model admits in the classical limit the Einsteinian form of
gravitational interactions. No figures.Comment: 25 pages, preprin
Two-loop effective potential for a general renormalizable theory and softly broken supersymmetry
I compute the two-loop effective potential in the Landau gauge for a general
renormalizable field theory in four dimensions. Results are presented for the
\bar{MS} renormalization scheme based on dimensional regularization, and for
the \bar{DR} and \bar{DR}' schemes based on regularization by dimensional
reduction. The last of these is appropriate for models with softly broken
supersymmetry, such as the Minimal Supersymmetric Standard Model. I find the
parameter redefinition which relates the \bar{DR} and \bar{DR}' schemes at
two-loop order. I also discuss the renormalization group invariance of the
two-loop effective potential, and compute the anomalous dimensions for scalars
and the beta function for the vacuum energy at two-loop order in softly broken
supersymmetry. Several illustrative examples and consistency checks are
included.Comment: 38 pages. Typos in equations (3.5), (3.11), and (6.3) are fixed.
Explicit claim of renormalization group invariance in the general case of
softly-broken supersymmetry is added. Additional discussion of cases of
multiple simple or U(1) groups. Equations in Appendix B rewritten in a more
useful for
- …
