1,518 research outputs found

    Systematic trends in total-mass profiles from dynamical models of early-type galaxies

    Full text link
    We study trends in the slope of the total mass profiles and dark matter fractions within the central half-light radius of 258 early-type galaxies, using data from the volume-limited ATLAS3D^{\mathrm{3D}} survey. We use three distinct sets of dynamical models, which vary in their assumptions and also allow for spatial variations in the stellar mass-to-light ratio, to test the robustness of our results. We confirm that the slopes of the total mass profiles are approximately isothermal, and investigate how the total-mass slope depends on various galactic properties. The most statistically-significant correlations we find are a function of either surface density, Σe\Sigma_e, or velocity dispersion, σe\sigma_e. However there is evidence for a break in the latter relation, with a nearly universal logarithmic slope above \log_{10}[\sigma_e/(\si{km~s^{-1}})]\sim 2.1 and a steeper trend below this value. For the 142 galaxies above that critical σe\sigma_e value, the total mass-density logarithmic slopes have a mean value γ=2.192±0.016\left\langle\gamma^\prime\right\rangle = -2.192 \pm 0.016 (1σ1\sigma error) with an observed rms scatter of only σγ=0.167±0.016\sigma_{\gamma^\prime}=0.167 \pm 0.016. Considering the observational errors, we estimate an intrinsic scatter of σγintr0.15\sigma_{\gamma^\prime}^\mathrm{intr} \approx 0.15. These values are broadly consistent with those found by strong lensing studies at similar radii and agree, within the tight errors, with values recently found at much larger radii via stellar dynamics or HI rotation curves (using significantly smaller samples than this work).Comment: 17 pages, 11 figures, 3 tables. Published in MNRA

    Two channels of supermassive black hole growth as seen on the galaxies mass-size plane

    Full text link
    We investigate the variation of black hole masses (Mbh) as a function of their host galaxy stellar mass (Mstar) and half-light radius (Re). We confirm that the scatter in Mbh within this plane is essentially the same as that in the Mbh - sigma relation, as expected from the negligible scatter reported in the virial mass estimator sigma_v^2=GxMstar/(5xRe). All variation in Mbh happens along lines of constant sigma_v on the (Mstar, Re) plane, or Mstar \propto Re for Mstar <2x10^11 Msun. This trend is qualitatively the same as those previously reported for galaxy properties related to stellar populations, like age, metallicity, alpha enhancement, mass-to-light ratio and gas content. We find evidence for a change in the Mbh variation above the critical mass of Mcrit ~ 2x10^11 Msun. This behaviour can be explained assuming that Mbh in galaxies less massive than Mcrit can be predicted by the Mbh - sigma relation, while Mbh in more massive galaxies follow a modified relation which is also dependent on Mstar once Mstar >Mcrit. This is consistent with the scenario where the majority of galaxies grow through star formation, while the most massive galaxies undergo a sequence of dissipation-less mergers. In both channels black holes and galaxies grow synchronously, giving rise to the black hole - host galaxy scaling relations, but there is no underlying single relation that is universal across the full range of galaxy masses.Comment: 11 pages, 5 figures; MNRAS accepted (minor text changes

    VLT Diffraction Limited Imaging and Spectroscopy in the NIR: Weighing the black hole in Centaurus A with NACO

    Full text link
    We present high spatial resolution near-infrared spectra and images of the nucleus of Centaurus A (NGC 5128) obtained with NAOS-CONICA at the VLT. The adaptive optics corrected data have a spatial resolution of 0.06" (FWHM) in K- and 0.11" in H-band, four times higher than previous studies. The observed gas motions suggest a kinematically hot disk which is orbiting a central object and is oriented nearly perpendicular to the nuclear jet. We model the central rotation and velocity dispersion curves of the [FeII] gas orbiting in the combined potential of the stellar mass and the (dominant) black hole. Our physically most plausible model, a dynamically hot and geometrically thin gas disk, yields a black hole mass of M_bh = (6.1 +0.6/-0.8) 10^7 M_sun. As the physical state of the gas is not well understood, we also consider two limiting cases: first a cold disk model, which completely neglects the velocity dispersion; it yields an M_bh estimate that is almost two times lower. The other extreme case is to model a spherical gas distribution in hydrostatic equilibrium through Jeans equation. Compared to the hot disk model the best-fit black hole mass increases by a factor of 1.5. This wide mass range spanned by the limiting cases shows how important the gas physics is even for high resolution data. Our overall best-fitting black hole mass is a factor of 2-4 lower than previous measurements. With our revised M_bh estimate, Cen A's offset from the M_bh-sigma relation is significantly reduced; it falls above this relation by a factor of ~2, which is close to the intrinsic scatter of this relation. (Abridged)Comment: 12 pages, 14 figures, including minor changes following the referee report; accepted for publication in The Astrophysical Journa

    The Quest for the Dominant Stellar Population in the Giant Elliptical NGC 5018

    Full text link
    Newly obtained HST/WFPC2 images of the disturbed elliptical galaxy NGC 5018 show that the average amount of internal reddening due to the its complex ``dust web'' is as low as E(B-V)~0.02 within the IUE aperture, thus implying that its observed and intrinsic energy distributions do not differ significantly down to UV wavelengths. This, in turn, is quite relevant to the current debate on the age of its dominant stellar population.Comment: 2 pages, 1 figure. Proceedings of the conference "Galaxy Disks and Disk Galaxies", ASP Conference Series, eds. J.G. Funes, S.J. and E.M. Corsin

    Systematic Uncertainties in Stellar Mass Estimation for Distinct Galaxy Populations

    Get PDF
    We show that different stellar-mass estimation methods yield overall mass scales that disagree by factors up to ~2 for the z=0 galaxy population, and more importantly, relative mass scales that sometimes disagree by factors >~3 between distinct classes of galaxies (spiral/irregular types, classical E/S0s, and E/S0s whose colors reflect recent star formation). This comparison considers stellar mass estimates based on (a) two different calibrations of the correlation between K-band mass-to-light ratio and B-R color (Bell et al., Portinari et al.) and (b) detailed fitting of UBRJHK photometry and optical spectrophotometry using two different population synthesis models (Bruzual-Charlot, Maraston), with the same initial mass function in all cases. We also compare stellar+gas masses with dynamical masses. This analysis offers only weak arguments for preferring a particular stellar-mass estimation method, given the plausibility of real variations in dynamical properties and dark matter content. These results help to calibrate the systematic uncertainties inherent in mass-based evolutionary studies of galaxies, including comparisons of low and high redshift galaxies.Comment: 5 pages including 2 enlarged figures, ApJ Letters, accepte

    Measuring the low mass end of the Mbh - sigma relation

    Full text link
    We show that high quality laser guide star (LGS) adaptive optics (AO) observations of nearby early-type galaxies are possible when the tip-tilt correction is done by guiding on nuclei while the focus compensation due to the changing distance to the sodium layer is made 'open loop'. We achieve corrections such that 40% of flux comes from R<0.2 arcsec. To measure a black hole mass (Mbh) one needs integral field observations of both high spatial resolution and large field of view. With these data it is possible to determine the lower limit to Mbh even if the spatial resolution of the observations are up to a few times larger than the sphere of influence of the black hole.Comment: 4 pages, 2 figures, LaTeX. To appear in "Hunting for the Dark: The Hidden Side of Galaxy Formation", Malta, 19-23 Oct. 2009, eds. V.P. Debattista and C.C. Popescu, AIP Conf. Ser., in pres

    Monster black holes

    Full text link
    A combination of ground-based and spacecraft observations has uncovered two black holes of 10 billion solar masses in the nearby Universe. The finding sheds light on how these cosmic monsters co-evolve with galaxies.Comment: 2 pages, 1 figure, LaTeX. Published in Nature "News & Views

    Selection bias in the M_BH-sigma and M_BH-L correlations and its consequences

    Full text link
    It is common to estimate black hole abundances by using a measured correlation between black hole mass and another more easily measured observable such as the velocity dispersion or luminosity of the surrounding bulge. The correlation is used to transform the distribution of the observable into an estimate of the distribution of black hole masses. However, different observables provide different estimates: the Mbh-sigma relation predicts fewer massive black holes than does the Mbh-L relation. This is because the sigma-L relation in black hole samples currently available is inconsistent with that in the SDSS sample, from which the distributions of L or sigma are based: the black hole samples have smaller L for a given sigma or have larger sigma for a given L. This is true whether L is estimated in the optical or in the NIR. If this is a selection rather than physical effect, then the Mbh-sigma and Mbh-L relations currently in the literature are also biased from their true values. We provide a framework for describing the effect of this bias. We then combine it with a model of the bias to make an estimate of the true intrinsic relations. While we do not claim to have understood the source of the bias, our simple model is able to reproduce the observed trends. If we have correctly modeled the selection effect, then our analysis suggests that the bias in the relation is likely to be small, whereas the relation is biased towards predicting more massive black holes for a given luminosity. In addition, it is likely that the Mbh-L relation is entirely a consequence of more fundamental relations between Mbh and sigma, and between sigma and L. The intrinsic relation we find suggests that at fixed luminosity, older galaxies tend to host more massive black holes.Comment: 12 pages, 7 figures. Accepted by ApJ. We have added a figure showing that a similar bias is also seen in the K-band. A new appendix describes the BH samples as well as the fits used in the main tex
    corecore