102 research outputs found

    11th German Conference on Chemoinformatics (GCC 2015) : Fulda, Germany. 8-10 November 2015.

    Get PDF

    Oligothiophene Interlayer Effect on Photocurrent Generation for Hybrid TiO<sub>2</sub>/P3HT Solar Cells

    Get PDF
    Planells M, Abate A, Snaith HJ, Robertson N. Oligothiophene Interlayer Effect on Photocurrent Generation for Hybrid TiO /P3HT Solar Cells. ACS Applied Materials &amp; Interfaces. 2014;6(19):17226-17235.A series of conjugated 3-hexylthiophene derivatives with a cyanoacrylic acid group has been prepared with conjugation length from one up to five thiophene units (1T–5T). The UV–vis spectra, photoluminescence spectra, electrochemical data and DFT calculations show lowering of LUMO energies and red-shift of absorption into the visible as the thiophene chain length increases. TiO2/P3HT solar cells were prepared with prior functionalization of the TiO2 surface by 1T–5T and studies include cells using undoped P3HT and using P3HT doped with H-TFSI. Without H-TFSI doping, photocurrent generation occurs from both the oligothiophene and P3HT. Doping the P3HT with H-TFSI quenches photocurrent generation from excitation of P3HT, but enables very effective charge extraction upon excitation of the oligothiophene. In this case, photocurrent generation increases with the light harvesting ability of 1T–5T leading to a highest efficiency of 2.32% using 5T. Overall, we have shown that P3HT can act in either charge generation or in charge collection, but does not effectively perform both functions simultaneously, and this illustrates a central challenge in the further development of TiO2/P3HT solar cells

    Gene expression signatures for colorectal cancer microsatellite status and HNPCC

    Get PDF
    The majority of microsatellite instable (MSI) colorectal cancers are sporadic, but a subset belongs to the syndrome hereditary nonpolyposis colorectal cancer (HNPCC). Microsatellite instability is caused by dysfunction of the mismatch repair (MMR) system that leads to a mutator phenotype, and MSI is correlated to prognosis and response to chemotherapy. Gene expression signatures as predictive markers are being developed for many cancers, and the identification of a signature for MMR deficiency would be of interest both clinically and biologically. To address this issue, we profiled the gene expression of 101 stage II and III colorectal cancers (34 MSI, 67 microsatellite stable (MSS)) using high-density oligonucleotide microarrays. From these data, we constructed a nine-gene signature capable of separating the mismatch repair proficient and deficient tumours. Subsequently, we demonstrated the robustness of the signature by transferring it to a real-time RT-PCR platform. Using this platform, the signature was validated on an independent test set consisting of 47 tumours (10 MSI, 37 MSS), of which 45 were correctly classified. In a second step, we constructed a signature capable of separating MMR-deficient tumours into sporadic MSI and HNPCC cases, and validated this by a mathematical cross-validation approach. The demonstration that this two-step classification approach can identify MSI as well as HNPCC cases merits further gene expression studies to identify prognostic signatures

    Strategies to Calculate Water Binding Free Energies in Protein–Ligand Complexes

    Full text link
    Water molecules are commonplace in protein binding pockets, where they can typically form a complex between the protein and a ligand or become displaced upon ligand binding. As a result, it is often of great interest to establish both the binding free energy and location of such molecules. Several approaches to predicting the location and affinity of water molecules to proteins have been proposed and utilized in the literature, although it is often unclear which method should be used under what circumstances. We report here a comparison between three such methodologies, Just Add Water Molecules (JAWS), Grand Canonical Monte Carlo (GCMC), and double-decoupling, in the hope of understanding the advantages and limitations of each method when applied to enclosed binding sites. As a result, we have adapted the JAWS scoring procedure, allowing the binding free energies of strongly bound water molecules to be calculated to a high degree of accuracy, requiring significantly less computational effort than more rigorous approaches. The combination of JAWS and GCMC offers a route to a rapid scheme capable of both locating and scoring water molecules for rational drug design

    Defect-Induced Water Bilayer Growth on Anatase TiO2(101)

    No full text
    Preparing an anatase TiO2(101) surface with a high density of oxygen vacancies and associated reduced Ti species in the near-surface region results in drastic changes in the water adsorption chemistry compared to adsorption on a highly stoichiometric surface. Using synchrotron radiation excited photoelectron spectroscopy, we observe a change in the water growth mode, from layer-by-layer growth on the highly stoichiometric surface to bilayer growth on the reduced surface. Furthermore, we have been able to observe Ti3+ enrichment at the surface upon water adsorption. The Ti3+ enrichment occurs concomitant with effective water dissociation into hydroxyls with a very high thermal stability. The water bilayer on the reduced surface is thermally more stable than that on the stoichiometric surface, and it is more efficient in promoting further water dissociation upon heating. The results thus show how the presence of subsurface defects can alter the wetting mechanism of an oxide surface

    Probing the dye-semiconductor interface in dye-sensitized NiO solar cells

    No full text
    The development of p-type dye-sensitized solar cells (p-DSSCs) offers an opportunity to assemble tandem photoelectrochemical solar cells with higher efficiencies than TiO2-based photoanodes, pioneered by O'Regan and Gratzel [Nature 353, 737-740 (1991)]. This paper describes an investigation into the behavior at the interfaces in p-DSSCs, using a series of BODIPY dyes, BOD1-3. The three dyes have different structural and electronic properties, which lead to different performances in p-DSSCs. We have applied photoelectron spectroscopy and transient absorption spectroscopy to rationalize these differences. The results show that the electronic orbitals of the dyes are appropriately aligned with the valence band of the NiO semiconductor to promote light-induced charge transfer, but charge-recombination is too fast for efficient dye regeneration by the electrolyte. We attribute this fast recombination, which limits the efficiency of the solar cells, to the electronic structure of the dye and the presence of Ni3+ recombination sites at the NiO surface

    Impact of Molecular Charge-Transfer States on Photocurrent Generation in Solid State Dye-Sensitized Solar Cells Employing Low-Band-Gap Dyes

    No full text
    "Push-pull" structures have been considered a winning strategy for the design of fully organic molecules as sensitizers in dye-sensitized solar cells (DSSC). In this work we show that the presence of a molecular excited state with a strong charge-transfer character may be critical for charge generation when the total energy of the photoexcitation is too low to intercept accepting states in the TiO2 photoanode. Though hole transfer to the 2,2â€Č,7,7â€Č-tetrakis(N,N-di-p-methoxyphenylamine)-9, 9â€Č-spirobifluorene can be very fast, an electron-hole pair is likely to form at the organic interface, resulting in a possible traplike excitation. This leads to poor photocurrent generation in the solid state DSSC (ss-DSSC) device. We demonstrate that it is possible to overcome this issue by fabricating SnO2-based ss-DSSC. The resulting solar cell shows, for the first time, that a SnO2-based ss-DSSC can outperform a TiO 2-based one when a perylene-based, low-band-gap, push-pull dye is used as sensitizer. © 2014 American Chemical Society
    • 

    corecore